摘要
1998年,唐国平以矩阵的形式定义一般厄米特群及其基本子群。以变换的形式定义一般厄米特群GH2n(R,a1,…,ar),在此基础上给出基本子群EH2n(R,a1,…,ar)的3类生成元,并证明生成元所满足的11种关系,从而取代文献[1]中5类生成元所满足的48个关系。得到的结论不但比文献[1]简单,而且对于进一步研究厄米特型的k1-函子和k2-函子具有一定的意义。
Guoping Tang[1] has given the definition of the general Hermition group GH2n(R,a1,…,ar) and its elementary subgroups EH2n(R,a1,…,ar) in the form of matrices.The general Hermition group GH2n(R,a1,…,ar) is defined in the form of transformations,and thereby,three classes of generators of elementary subgroups are given.It is proven that three classes of generators satisfy 11 kinds of relations instead of the 48 kinds of relations by 5 classes generators satisfied in [1].The conclusion is not only simpler than that in [1] but also important to further study k1-functor and k2-functor of the Hermitian forms.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2010年第4期470-472,477,共4页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(10971122)
山东科技大学"春蕾计划"资助项目(2008BZC015)