期刊文献+

分圆域Q(ζ_(33))的幂元整基

Power Integral Bases of Cyclotomic FieldQ(ζ33)
下载PDF
导出
摘要 伽罗华数域L称有一个幂元整基,如果其代数整数环具有形式Ζα,其中α∈L.此时称α是L的幂元整基生成元.设α,β是L的两个幂元整基生成元,若β=m±σ(α),m∈Z,σ∈Gal(L/Q),则称α与β等价.本文主要研究分圆域Q(ζ33)的幂元整基问题.分圆域Q(ζ33)的代数整环是Z[ζ33],所以ζ33是Q(ζ33)的幂元整基生成元.设α是Q(ζ33)的幂元整基生成元,证明了当α+ā■Z时,α与ζ33等价.从而给出在此条件下分圆域Q(ζ33)的所有幂元整基生成元. A galois number field L is said to have a power bases if its ring of integers is of the form Z[α] for some α∈L.In this case α is called a generator of power bases in L.Let α and β be generators of two power bases in L,α and β is called equivalent if β=m±σ(α) for some m∈Z,σ∈Gal(L/Q).In this paper,we discuss the generators of power integral bases of cycloyomic field Q(ζ33).Z[ζ33]is the ring of integers of the cycloyomic field Q(ζ33),so ζ33 generates a power integral bases for Q(ζ33).Let α be another generator of a power integral bases of cyclotomic Q(ζ33),We proved that if α+ā Z,then α is equivalent to ζ33.Therefore,we can get all the generators of power integral bases for the cyclotomic field Q(ζ33) under the case.
作者 袁昌斌
出处 《大学数学》 2010年第3期103-107,共5页 College Mathematics
关键词 幂元整基 分圆域 生成元 单位 power integral bases cyclotomic field generator unit
  • 相关文献

参考文献6

  • 1Lavallee M J,Spearman B K,Williams KS and Yang Q.Dihedral quintic fields with a power basis[J].Math.J.Okayama Univ.,2005,47(1):75-79. 被引量:1
  • 2Bremner A.On power bases in cyclotomic number fields[J].Number Theory,1988,28(3):288-298. 被引量:1
  • 3Robertson L.Power bases for cyclotomic integer rings[J].Number Theory,1998,69(1):98-118. 被引量:1
  • 4Robertson L.Power bases for 2-power cyclotomic fields[J].Number Theory,2001,88(1):196-209. 被引量:1
  • 5Washington L J.Introduction to cyclotomic fields(2nd)[M].New York:Springer Verlag,1997. 被引量:1
  • 6冯克勤.代数数论[M].上海:科学出版社,2001.. 被引量:5

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部