摘要
伽罗华数域L称有一个幂元整基,如果其代数整数环具有形式Ζα,其中α∈L.此时称α是L的幂元整基生成元.设α,β是L的两个幂元整基生成元,若β=m±σ(α),m∈Z,σ∈Gal(L/Q),则称α与β等价.本文主要研究分圆域Q(ζ33)的幂元整基问题.分圆域Q(ζ33)的代数整环是Z[ζ33],所以ζ33是Q(ζ33)的幂元整基生成元.设α是Q(ζ33)的幂元整基生成元,证明了当α+ā■Z时,α与ζ33等价.从而给出在此条件下分圆域Q(ζ33)的所有幂元整基生成元.
A galois number field L is said to have a power bases if its ring of integers is of the form Z[α] for some α∈L.In this case α is called a generator of power bases in L.Let α and β be generators of two power bases in L,α and β is called equivalent if β=m±σ(α) for some m∈Z,σ∈Gal(L/Q).In this paper,we discuss the generators of power integral bases of cycloyomic field Q(ζ33).Z[ζ33]is the ring of integers of the cycloyomic field Q(ζ33),so ζ33 generates a power integral bases for Q(ζ33).Let α be another generator of a power integral bases of cyclotomic Q(ζ33),We proved that if α+ā Z,then α is equivalent to ζ33.Therefore,we can get all the generators of power integral bases for the cyclotomic field Q(ζ33) under the case.
出处
《大学数学》
2010年第3期103-107,共5页
College Mathematics
关键词
幂元整基
分圆域
生成元
单位
power integral bases
cyclotomic field
generator
unit