期刊文献+

基于ANSYS优化法计算拱桥施工扣索索力与预抬量

Solution of ANSYS-Based Optimization on Construction Cable Force and Segmental Camber of Arch Bridge
下载PDF
导出
摘要 以在建的新龙门大桥为工程背景,开展拱肋吊装过程扣索索力和预抬量的优化分析。采用有限元计算与优化分析相结合的方法对扣索索力和预抬值进行求解,索力和预抬值的计算以拱肋各标高控制点的高程偏差平方和最小为优化目标,以拱肋各个控制点的标高偏差为状态变量,采用一阶分析法对设计变量进行迭代优化。计算结果表明该方法具有计算精度高的优点,与实测结果吻合良好。 With New Longmen Bridge for engineering background,the optimization analysis of cable forces and segmental cambers have been performed during arch rib segmental installment process.The method of FEM analysis combined with optimization was calculate the cable forces and segmental cambers.The calculate aimed at the square sum of the altitude deviation of all attitude-controlled nodes;it was limited by the allowable odds of the attitude-controlled nodes.The first order optimization method was introduced to acquire the cable forces and segmental cambers.The analytical result shows that this method has a high accuracy and tallies with practice.
出处 《交通科技与经济》 2010年第5期77-80,共4页 Technology & Economy in Areas of Communications
关键词 拱肋安装 一阶分析法 扣索索力 预抬量 arch rib installationfirst order method cable force segmental camber
  • 相关文献

参考文献7

二级参考文献26

  • 1周汉东 许晓锋 黄福伟.大跨度钢管混凝土拱桥钢管拱肋吊装施工控制[J].哈尔滨建筑大学学报,1995,28:87-92. 被引量:1
  • 2MU Shengjing, SU Hongye, WANG Yuexuan, et al. An efficient evolutionary multi-objective optimization algorithm [A]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC2003) [C]. Canberra: IEEE Press, 2003,914 - 920. 被引量:1
  • 3Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Proceedings of the First International Conference on Genetic Algorithms [C].Lawrence Erlbaum: IEEE Press, 1985, 93 - 100. 被引量:1
  • 4Fonseca C M, Fleming P J. An Overview of Evolutionary Algorithms in Multiohjective Optimization [R]. Sheffield:Department of Automatic Control and Systems Engineering,University of Sheffield, 1994. 被引量:1
  • 5Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation, 1994, 2(3): 221-248. 被引量:1
  • 6Veldhuizen D A V. Multiobjective evolutionary Algorithms:Classification, Analyses, and New Innovations [D].Dayton: Air Force Institute of Technology Air University,1999. 被引量:1
  • 7Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results [J]. Evolutionary Computation, 2000, 8(2): 173-195. 被引量:1
  • 8Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multi-objective Evolutionary Optimization [R]. KanGAL report, 200002, Kanpur : Indian Institute Technology, 2002. 被引量:1
  • 9Michalewicz Z, Dasgupta D, Le R, et al. Evolutionary algorithm for constrained engineering problems [J].Computers & Industrial Engineering, 1996, 30(4) :861 - 87O. 被引量:1
  • 10Deb K. An efficient constraint handling method for genetic algorithm [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186:311-338. 被引量:1

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部