期刊文献+

基于VPRS和RBF神经网络的WSN节点故障诊断 被引量:10

Fault Diagnosis of Node in WSN Based on VPRS and RBF Neural Network
下载PDF
导出
摘要 为保障油料供给的安全性,研究无线传感器网络(WSN)节点故障诊断的可行性策略,提出变精度粗糙集(VPRS)和RBF神经网络结合的故障诊断方法.该方法由运行中的汇聚节点实时获取子节点故障征兆,建立初始决策表,利用VPRS作为前端处理系统,对初始决策表进行约简,删除冗余的、不重要的属性征兆,并将约简后的结果输入RBF神经网络实现节点故障识别.仿真实验结果表明:对于具有显著不确定性的WSN节点故障诊断,该方法能够准确快速地得出诊断结果,鲁棒性和适用性更强. In order to ensure the security of oil supply,the feasible strategy for fault diagnosis of node in wireless sensor network(WSN) is investigated and a fault diagnosis method based on variable precision rough set(VPRS) and RBF neural network for WSN's nodes is proposed in this paper.The procedure of the method is as follows.The sink gets node fault symptoms and forms initial decision table firstly.Then the VPRS theory is used as the front-end processing system to remove redundant and insignificant attribute symptoms for getting a relative minimum condition attribute set,which plays a major role in fault diagnosis.Finally,the relative minimum condition attribute set is input into RBF neural network to identify faults.Simulation results show that the proposed method can accurately and quickly arrive at the decision about the fault diagnosis of node with significant uncertainty in WSN.It also has strong robustness and applicability.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2010年第7期807-811,共5页 Transactions of Beijing Institute of Technology
基金 北京理工大学基础研究基金资助项目(20070542009)
关键词 故障诊断 变精度粗糙集 RBF神经网络 无线传感器网络 fault diagnosis variable precision rough set RBF neural network wireless sensor network
  • 相关文献

参考文献8

二级参考文献16

  • 1黎东英,王应明.基于可变精度粗集理论的规则挖掘模型[J].计算机测量与控制,2005,13(8):833-834. 被引量:6
  • 2桑妍丽.变精度粗糙集下基于信息熵的属性约简算法[J].山西师范大学学报(自然科学版),2005,19(3):27-30. 被引量:8
  • 3张文修,吴伟志.粗糙集理论与方法[M].北京:科学出版社,2005. 被引量:64
  • 4Tang Shensheng,Li Wei.QoS supporting and optimal energy allocation for a cluster based wireless sensor network[J].Computer Communications,2005,29(13-14):2569-2577. 被引量:1
  • 5Ssu K-F,Chou C-H,Jiau H C,et al.Detection and diagnosis of data inconsistency failures in wireless sensor networks[J].Computer Networks,2005,50(9):1247-1260. 被引量:1
  • 6Chessa S,Santi P.Crash faults identification in wireless sensor networks[J].Computer Communications,2002,25:1273-1282. 被引量:1
  • 7孙利民,李建中,陈渝,等.无线传感器网络[M].北京:清华大学出版社,2004:407-418. 被引量:3
  • 8Ta F E H,Shen Lixiang.Fault diagnosis based on rough set theory[J].Engineering Applications of Artificial Intelligence,2003,16(1):39-43. 被引量:1
  • 9Pawlak Z.Rough sets[J].International Journal of Information and Computer Sciences,1982,11(5):341-356. 被引量:1
  • 10Pawlak Z.Rough sets-theoretical aspects of reasoning about data[M].London:Kluwer Academic Publishers,1991. 被引量:1

共引文献61

同被引文献56

  • 1王石磊,陈立军,郭艳玲.温室测控技术的发展及我国温室测控面监的问题[J].林业机械与木工设备,2007,35(7):9-11. 被引量:10
  • 2陈祥光 谢迎新 罗红等.无线传感器网络故障诊断技术研究进展及应用设计.仪器仪表学报,2009,30(3):136-139. 被引量:2
  • 3雷霖,代传龙,王厚军.基于Rough set理论的无线传感器网络节点故障诊断[J].北京邮电大学学报,2007,30(4):69-73. 被引量:23
  • 4Akyildiz I, Su W, Sankarasubdam Y. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 38 (4): 393-422. 被引量:1
  • 5刘芹,王钢,董镝,等.线路在线监测的白组织自愈无线传感器网络方案[J].高电压术,2010,36(3):616-620. 被引量:1
  • 6PANDA M, KHILAR P M. Distributed soft fault detec- tion algorithm in wireless sensor networks using statisti- cal test [ C ]. Parallel Distributed and Grid Computing (PDGC), 2012 2nd IEEE International Conference on. Solan ,2012 : 195 -198. 被引量:1
  • 7MOUSTAPHA A I, SELMIC R R. Wireless sensor network modeling using modified recurrent neural networks : Appli- cation to fault detection[ J]. IEEE Transactions on Instru- mentation and Measurement ,2008,7(5 ) :981-988. 被引量:1
  • 8SARKIS M, HAMDAN D, EL HASSAN B, et al. Online data fault detection in wireless sensor networks [ C ]. Ad- van-ces in Computational Tools for Engineering Applica- tions (ACTEA),2012 2nd International Conference on, Beirut, 2012 : 61-65. 被引量:1
  • 9KHAN S A, DAACHI B, DJOUANI K. Application of fuzzy inference systems to detection of faults in wireless sensor networks [ J ]. Neurocomputing, 2012, 94 ( 10 ) : 111-120. 被引量:1
  • 10LEE M H,CHOI Y H.Fault detection of wireless sensor networks[J].Computer Communications,2008,31(14):3469-3475. 被引量:1

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部