期刊文献+

Restricted Summability of Fourier Transforms and Local Hardy Spaces

Restricted Summability of Fourier Transforms and Local Hardy Spaces
原文传递
导出
摘要 A general summability method, the so-called θ-summability is considered for multi-dimensional Fourier transforms. Under some conditions on θ, it is proved that the maximal operator of the θ-means defined in a cone is bounded from the amalgam Hardy space W(hp, e∞) to W(Lp,e∞). This implies the almost everywhere convergence of the θ-means in a cone for all f ∈ W(L1, e∞) velong to L1. A general summability method, the so-called θ-summability is considered for multi-dimensional Fourier transforms. Under some conditions on θ, it is proved that the maximal operator of the θ-means defined in a cone is bounded from the amalgam Hardy space W(hp, e∞) to W(Lp,e∞). This implies the almost everywhere convergence of the θ-means in a cone for all f ∈ W(L1, e∞) velong to L1.
作者 Ferenc WEISZ
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第9期1627-1640,共14页 数学学报(英文版)
基金 Supported by the Hungarian Scientific Research Funds (OTKA) No. K67642
关键词 Wiener amalgam spaces local Hardy spaces 0-summability of Fourier transforms atomic decomposition Wiener amalgam spaces, local Hardy spaces, 0-summability of Fourier transforms, atomic decomposition
  • 相关文献

参考文献18

  • 1Zygmund, A.: Trigonometric Series, Cambridge Press, London, 3rd edition, 2002. 被引量:1
  • 2Moricz, F.: The maximal Fejer operator for Fourier transforms of functions in Hardy spaces. Acta Sci. Math. (Szeged), 62, 537-555 (1996). 被引量:1
  • 3Moricz, F.: The maximal Fejer operator is bounded from H^1(T) to L^1T). Analysis, 16, 125-135 (1996). 被引量:1
  • 4Weisz, F.: Summability of Multi-dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. 被引量:1
  • 5Butzer, P. L., Nessel, R. J.: Fourier Analysis and Approximation, Birkh~iuser Verlag, Basel, 1971. 被引量:1
  • 6Trigub, R. M., Belinsky, E.S.: Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004. 被引量:1
  • 7Feichtinger, H. G., Weisz, F.: The Segal algebra S0(R^d) and norm summability of Fourier series and Fourier transforms. Monatshefte Math., 148, 333-349 (2006). 被引量:1
  • 8Feichtinger, H. G., Weisz, F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Camb. Phil. Soc., 140, 509-536 (2006). 被引量:1
  • 9Stein, E. M, Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. 被引量:1
  • 10Marcinkiewicz, J., Zygmund, A.: On the summability of double Fourier series. Fund. Math., 32, 122-132 (1939). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部