期刊文献+

WPANFIS:combine fuzzy neural network with multiresolution for network traffic prediction 被引量:3

WPANFIS:combine fuzzy neural network with multiresolution for network traffic prediction
原文传递
导出
摘要 A novel methodology for prediction of network traffic, WPANFIS, which relies on wavelet packet transform (WPT) for multi-resolution analysis and adaptive neuro-fuzzy inference system (ANFIS) is proposed in this article. The widespread existence of self-similarity in network traffic has been demonstrated in earlier studies, which exhibits both long range dependence (LRD) and short range dependence (SRD). Also, it has been shown that wavelet decomposition is an effective tool for LRD decorrelation. The new method uses WPT as extension of wavelet transform which can decoorrelate LRD and make more precisely partition in the high-frequency section of the original traffic. Then ANFIS which can extract useful information from the original traffic is implemented in this study for better prediction performance of each decomposed non-stationary wavelet coefficients. Simulation results show that the proposed WPANFIS can achieve high prediction accuracy in real network traffic environment. A novel methodology for prediction of network traffic, WPANFIS, which relies on wavelet packet transform (WPT) for multi-resolution analysis and adaptive neuro-fuzzy inference system (ANFIS) is proposed in this article. The widespread existence of self-similarity in network traffic has been demonstrated in earlier studies, which exhibits both long range dependence (LRD) and short range dependence (SRD). Also, it has been shown that wavelet decomposition is an effective tool for LRD decorrelation. The new method uses WPT as extension of wavelet transform which can decoorrelate LRD and make more precisely partition in the high-frequency section of the original traffic. Then ANFIS which can extract useful information from the original traffic is implemented in this study for better prediction performance of each decomposed non-stationary wavelet coefficients. Simulation results show that the proposed WPANFIS can achieve high prediction accuracy in real network traffic environment.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2010年第4期88-93,共6页 中国邮电高校学报(英文版)
基金 supported by the National Basic Research Program of China (2007CB310701) Research Fund for University Doctor Subject (20070013013) Chinese Universities Scientific Fund (2009RC0124)
关键词 network traffic PREDICTION WPT ANFIS network traffic, prediction, WPT, ANFIS
  • 相关文献

参考文献18

  • 1Feldmann A, Gilbert A, Willinger W, et al. The changing nature of network traffic: scaling phenomena. Computer Communication Review, 1998, 28(2): 5-29. 被引量:1
  • 2Leland W E, Taqqu M S, Willinger W, et al. On the self-similar nature of ethemet traffic (extended version). IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15. 被引量:1
  • 3Paxson V, Floyd S. Wide area traffic: the failure of poisson modeling. IEEE/ACM Transactions on Networking, 1995, 3(3): 226-244. 被引量:1
  • 4Beran J, Sherman R, Taqqu M S, et al. Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communications, 1995, 43(2/3/4): 1566-1579. 被引量:1
  • 5Crovella M E, Bestavros A. Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Transactions on Networking, 1997, 5(6): 835-846. 被引量:1
  • 6Abry P, Flandrin P, Taqqu M S, et al. Wavelets for the analysis, estimation and synthesis of scaling data. Park K, Willinger W. Self-similar Network Traffic and Performance Evaluation. New York, NY, USA: John Wiley & Sons Inc, 2000:39-88. 被引量:1
  • 7Papagiannaki K, Taft N, Zhang Z L, et al. Long-term forecasting of Internet backbone traffic. IEEE Transactions on Neural Networks, 2005, 16(5): 1110-1124. 被引量:1
  • 8Wang X, Ren Y, Shan X M. WDRLS: a wavelet based on-line predictor for network traffic. Proceedings of the Global Telecommunications Conference (GLOBECOM'03), Vol 7, Dec 1-5, 2003, San Francisco, CA, USA. Piscataway, N J, USA: IEEE, 2003:4034-4038. 被引量:1
  • 9Luan Y Q. Multiresolution traffic prediction: combine RLS algorithm with wavelet transform. Proceedings of the International Conference on Information Networking (ICOIN'05), Jan 31-Feb 2, 2005, Jeju, Korea. LNCS 3391. Berlin, Germany: Springer-Verlag, 2005:321-331. 被引量:1
  • 10Zhao Q G, Fang X M, Li Q Z, et al. WNN-based NGN traffic prediction. Proceedings of the 7th International Symposium Autonomous Decentralized Systems (ISADS'05), Apr 4-8, 2005, Chengdu, China. Los Alamitos, CA, USA: IEEE Computer Society, 2005:230-234. 被引量:1

同被引文献33

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2王升辉,裘正定.结合多重分形的网络流量非线性预测[J].通信学报,2007,28(2):45-50. 被引量:40
  • 3Francesco Delli Priscoli,Dario Pompili.A demand-assignment algorithm based on a Markov modulated chain prediction model for satellite bandwidth allocation[J]. Wireless Networks,2009,15(8):999-1012. 被引量:1
  • 4Will E.Leland,Murad S.Taqqu,Walter Willinger, Daniel V.Wilson.On the self-similar nature of Ethernet traffic(extended version)[J].Networking,IEEE/ACM Transactions on,1994,2(1):1-15. 被引量:1
  • 5Tadafumi Yoshihara,Shoji Kasahara and Yulaka Takahashi. Practical Time-Scale Fitting of Self-Similar Traffic with Markov-Modulated Poisson Process[J].Telecommunication Systems,2001,17:185 -211. 被引量:1
  • 6Antonio Nogueira,Paulo Salvador,Rui Valadas,Antonio Pacheco.Markovian Modelling of Internet Traffic[J]. Lecture Notes in Computer Science,2011,5233:98-124. 被引量:1
  • 7Soderstrom,Torsten.Discrete Time Stochastic Systems-Esitmation and Control[M].2nd Edition.New York: Prentice-Hall,2002. 被引量:1
  • 8Shih Yu Chang,Hsiao-Chun Wu.Novel Fast Computation Algorithm of the Second-Order Statistics for Autoregressive Moving-Average Processes[J].IEEE Transactions on Signal Processing,2009,57(2):526-535. 被引量:1
  • 9Tan Man-Chun,Wong,S.C,Xu Jian-Min,Guan Zhan-Rong, Zhang Peng.An Aggregation Approach to Short-Term Traffic Flow Prediction[J].IEEE Transactions on Intelligent Transportation Systems,2009,10(1):60-69. 被引量:1
  • 10Shu Yantai,Jin Zhigang,Zhang Lianfang,Wang Lei. Traffic prediction using FARIMA models[C],Proceedings of ICC'99,1999,2:891-895. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部