期刊文献+

带有LMO系数椭圆方程组的加权h^1的内估计

Interior Weighted h^1 Estimate for Elliptic Equations with LMO Coefficients
原文传递
导出
摘要 在本文中,我们通过奇异积分及其交换子的估计建立了带有LMO消失系数的椭圆方程组在有限区域的加权h^1的先验估计. In this paper, we establish a priori weighted h^1-estimate in a bounded domain for a elliptic equations with vanishing LMO coefficients via a corresponding estimate for the commutator of a singular integral with an LMO function.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第5期911-924,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10861010)
关键词 加权HARDY空间 奇异积分及其交换子 二阶椭圆方程 weighted hardy spaces singular integral commutator second order elliptic equations
  • 相关文献

参考文献11

  • 1Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Berlin: Springer- Verlag, 1983. 被引量:1
  • 2Sarason D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 1975, 207: 391-405. 被引量:1
  • 3Chiarenza F., Frasca M., Longo P., Interior estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 1991, 40: 149-168. 被引量:1
  • 4Sun Y. Z., Su W. Y., Interiorhl-estimates for second order elliptic equations with vanishing LMO coefficients, J. funct. Anal., 2006, 234: 235-260. 被引量:1
  • 5Chang D. C., Li S. Y., On the boundedness of multipliers, commutators and the second derivatives of Green's operators on H^1 and BMO, Ann. Sc. Norm. Super. Pisa CL, 1999, 28(4): 341-356. 被引量:1
  • 6Stronger J., Torchinsky A., Weighted Hardy Spaces, Lecture Notes in Math., Berlin: Springer-Verlag, 1381. 被引量:1
  • 7John F., Nirenberg L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 1961, 14: 415-426. 被引量:1
  • 8Calderon A. P., Zygmund A., On the existence of certain singular integrals, Acta Math., 1952, 88: 85-139. 被引量:1
  • 9Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ., Princeton: Press, 1970. 被引量:1
  • 10Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ., Princeton: Press, 1971. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部