期刊文献+

一种基于动态排序的最大频繁项集挖掘算法

A Maximal Frequent Itemsets Mining Algorithm Based on Dynamic Reordering
原文传递
导出
摘要 集合枚举树是最大频繁项集挖据算法中常采用的数据结构。在此算法中,最大频繁项集的挖掘过程也可以看作对集合枚举树的搜索过程。为缩小对集合枚举树的搜索空间,本文提出了一种新颖而高效的剪枝方法:根据已挖掘得到的最大频繁模式动态排列枚举树节点的顺序,最大限度的施行剪枝,从而缩小搜索空间。该算法采用位图的数据格式与深度优先的搜索策略。实验结果表明,该算法能有效提高最大频繁项集的挖掘效率,在采用相同的测试数据情况下,效率优于FPMax。 Set Enumeration Tree(SET) is a common data structure in maximal frequent itemsets(MFI) mining algorithm. For this kind of algorithm, the process of mining MFI is a searching process. To reduce the search space of SET,a novel and effective pruning method, MPDR algorithm, in which SET node is max-patterned reordered dynamically, is introduced. Bitmap data format and depth-first search strategy are adopted by this algorithm. Experiments indicate that this algorithm accelerates the generation of maximal frequent itemsets obviously. Using the same testing data sets, our new approach outperforms the FPMax algorithm.
出处 《世界科技研究与发展》 CSCD 2010年第4期440-444,共5页 World Sci-Tech R&D
关键词 数据挖据 最大频繁项集 集合枚举树 动态排序 data mining maximal frequent itemsets set enumeration tree dynamic reordering
  • 相关文献

参考文献13

  • 1Jr. Roberto J. Bayardo. Effciently mining long patterns from databases. In SIGMOD'98:Proceedings of the 1998 ACM SIGMOD international conference on Management of data[ C]. New York, USA:ACM Press, 1998:85-93. 被引量:1
  • 2Karam Gouda and Mohammed Javeed Zaki. Effciently mining maximal frequent itemsets. In ICDM 01 :Proceedings of the 2001 IEEE International Conference on Data Mining [ C ]. Washington, DC, USA, IEEE Computer Society,2001 : 163-170. 被引量:1
  • 3Dao Lin and Zvi M. Kedem. Princer - search : A new algorithm for discovering the maximum frequent itemset. In Proceedings of the 1998 International Conference on Extending DataBase Technology (EDBT'98) [C]. ed. [S. l.] 1998:105-109. 被引量:1
  • 4Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. Depth first generation of long patterns. In KDD '00:Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining[ C]. New York, NY, USA, ACM Press 2000: 108-118. 被引量:1
  • 5Mohammed J. Zaki. Scalable algorithms for association rule mining [ J]. IEEE Transactions on Knowledge and Data Engineering,2001, 12 ( 3 ) :372-390. 被引量:1
  • 6Douglas Burdick, Manuel Calimlim, and Johannes Gehrke. MAFIA : A maximal frequent itemset algorithm for transactional databases. In Proceedings of the 17th International Conference on Data Engineering [ C ]. Washington, DC, USA, IEEE Computer Society ,2001:443452. 被引量:1
  • 7Gosta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset mining using fp-trees. [ J]. IEEE Transactions on Knowledge and Data Engineering ,2005,17 ( 10 ) : 1347-1362. 被引量:1
  • 8路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 9宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 10J Hipp, U Guntzer, G Nakaeizadelr. Algorithms from association rule mining A general survey and comparison. The 2000 ACM SIGMOD Int' 1 Conf. On Management of Data. Dallas,USA,ACM Press. 2000. 被引量:1

二级参考文献24

  • 1李庆华,王卉,蒋盛益.挖掘最大频繁项集的并行算法[J].计算机科学,2004,31(12):132-134. 被引量:5
  • 2宋余庆 朱玉全 孙志辉 陈耿.基于FP—Tree的最大频繁项集挖掘及其更新算法.软件学报,2003,14(9):1586—1592[J].http://wwwjos.org.cn/1000-9825/14/1586.htm,:. 被引量:1
  • 3Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. on VLDB. 1994. 487-499.http://www.almaden.ibm.conVcs/people/srikant/papers/vldb94.pdf. 被引量:1
  • 4Bayardo R. Efficiently mining long patterns from databases. In: Haas LM, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 85-93. 被引量:1
  • 5Burdick D, Calimlim M, Gehrke J. Mafia: A maximal frequent itemset algorithm for transactional databases. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 443-452. http://www.cs.cornell.edu/boom/2001 sp/yiu/mafia-camera.pdf. 被引量:1
  • 6Gouda K, Zaki MJ. Efficiently mining maximal frequent itemsets. In: Proc. of the 1st IEEE Int'l Conf. on Data Mining. 2001.163-170. http ://www.cs .tau. ac .il/-fiat/dmsem03/E fficient%20Mining%20Maxmal%20Frequent%20Itemsets%20-%202001 .pdf. 被引量:1
  • 7Wang H, Li QH. An improved maximal frequent itemset algorithm. In: Wang GY, eds. Proc of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, the 9th Int'l Conf (RSFDGrC 2003). LNCS 2639, Heidelberg: Springer-Verlag, 2003. 484-490. 被引量:1
  • 8Zhou QH, Wesley C, Lu BJ. SmartMiner: A depth 1st algorithm guided by tail information for mining maximal frequent itemsets.In: Proc of the IEEE Int'l Conf on Data Mining (ICDM2002). 2002. 570-577. http://www.serviceware.com/pdffiles/datasheets/ServiceWare-Smartminer-Datasheet.pdf. 被引量:1
  • 9Grahne G, Zhu JF. High performance mining of maximal frequent itemsets. In: Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining (HPDM 2003). 2003. 135-143. http://www.cs.concordia.ca/db/dbdm/hpdm03.pdf. 被引量:1
  • 10Agarwal RC, Aggarwal CC, Prasad VVV. Depth 1 st generation of long patterns. In: Proc. of the 6th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. 2000. 108-118. http://www.cs.tau.ac.il/-fiat/dmsem03/Depth%20First%20Generation%20of%20Long%20Patterns%20-%202000.pdf. 被引量:1

共引文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部