期刊文献+

资源受限的认知无线电系统优化合作频谱感知算法 被引量:3

Optimal Cooperative Spectrum Sensing Algorithm of the Resource Constrained Cognitive Radio Networks
下载PDF
导出
摘要 认知无线电的首要任务就是动态地感知频谱,合作频谱感知提高了频谱感知的可靠性。目前大多数频谱感知算法采用全部认知无线电台参与感知,并且假设每个认知无线电台的信噪比的测量值为一常数。然而,由于无线信道的特性和环境差异,每个认知无线电台的信噪比是有差异的,同时系统资源也是有限的。基于此,在采用能量检测硬判决的合作频谱感知算法基础上,提出一种优化的频谱感知算法。它在满足给定系统探测概率及虚警概率前提下,采用部分性能较好的认知无线电台参与频谱感知,并使系统感知开销最小。理论和仿真证明了其合理及有效性。 The primary task of cognitive radio is dynamically sensing spectrum.Cooperative spectrum sensing increases the reliability of spectrum sensing.Recently most spectrum sensing algorithm uses all the cognitive radio to participate in the sensing and assumes the SNR measured values of each cognitive radio as a constant.However,because the characteristics and environment of wireless channel have difference,the SNR of each cognitive radio is difference and system resources are also limited.Based on this,we proposed an optimized spectrum sensing algorithm on the foundation of cooperative spectrum sensing which uses hard decision.It can use partial of cognitive radio to participate in spectrum sen-sing and minimize the sensing overhead.The analytic results were verified by computer simulation.
出处 《计算机科学》 CSCD 北大核心 2010年第9期54-56,89,共4页 Computer Science
基金 国家科技支撑计划项目(2008BAH30B12) 国家自然科学基金(60702039)资助
关键词 频谱感知 硬判决 感知开销 资源受限 False alarm probability Hard decision Sensing overhead Resource constrained
  • 相关文献

参考文献9

  • 1FCC.Spectrum Policy Task Force Report,ET Docket[R].No.02-155.Nov.2002. 被引量:1
  • 2Mitola J,Maquire G Q Jr.Cognitive Radio:Making SoftwareRadios More Personal[J].IEEE Personal Communications,1999,6(4):13-18. 被引量:1
  • 3Mishra S M,Sahai A,Broderson R W.Cooperative sensing among cognitive radios[C] ∥Proc.IEEE International Conference on Comunications(ICC) 2006.Istanbul,Turkey,June 2006. 被引量:1
  • 4Cabric D,Mishra S M,Brodersen R W.Implementation issues in spectrum sensing for cognitive radios[C] ∥Proc.38th Asilomar Conference on Signals,Systems and Computers 2004.November 2004:772-776. 被引量:1
  • 5Liang Y-C,Peh E.Optimization for cooperative sensing in cognitive radio networks[C] ∥Proc.IEEE WCNC 2007.Hong Kong,China,Mar.2007:27-32. 被引量:1
  • 6Zhang Wei,Mallik R K,Letaief B K.Cooperative SpectrumSensing Optimization in Cognitive Radio Networks[C] ∥Proc.IEEE International Conference oniee Department of ECE.Hong Kong University of Science:3411-3415. 被引量:1
  • 7Fodor V,Glaropoulos I,Pescosolido L.Detecting low-power primary signals via distributed sensing to support opportunistic spectrum access[C] ∥Proccedings of IEEE ICC'09.Germany,2009. 被引量:1
  • 8Kostylev V I.Energy detection of a signal with random amplitude[C] ∥Proc.IEEE Int.Conf.Commun.May 2002:1606-1610. 被引量:1
  • 9Niu Ruixin,Varshney P K.Performance Analysis of Distributed Detection in a Random Sensor Field[J].IEEE Transactions on Signal Processing,2008,56(1):339-349. 被引量:1

同被引文献40

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on In- formation Theory, 2006,52(4) .. 1289-1306. 被引量:1
  • 2Candes E, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005,51(12) : 4203-4215. 被引量:1
  • 3Havary-Nassab V, Hassan S, Valaee S. Compressive detection for wide-band spectrum sensing [C] ff International Conference on Acoustics, Speech, and signal Processing. Dallas, TX, USA, Mar. 2010:3094-3097. 被引量:1
  • 4Needell D, Tropp J A. CoSaMP: Iterative signal recovery fror incomplete and inaccurate samples[J]. ApplComput Harmon A1 nal, 2009,26 (3) .- 301-321 1. 被引量:1
  • 5Tropp J A,Gilbert A C. Signal recovery from random measure- ments via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007,53(12) : 4655-4666. 被引量:1
  • 6Davis G, Mallat S, Avetlaneda M. Adaptive greedy approxima- tions[J]. Constructive Approximation, 1997,13(1) : 57-98. 被引量:1
  • 7Needell D, Vershynin tL Uniform uncertainty principle and sig-nal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2007, 9 ( 3 ) .. 317- 334. 被引量:1
  • 8LuGan D T T, Nam N, Tran T D. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//42nd Asi/omar Conference on Signal, Systems and Computers. Pacific Grove, USA: IEEE Press, 2008 .. 581-587. 被引量:1
  • 9Quan Zhi, Cui Shu-guang, Poor H V, et al. Collaborative Wide- band Sensing for Cognitive Radios [J]. IEEE Signal Processing Magazine, 2008,25 (6) : 60-73. 被引量:1
  • 10Yueek T, Arslan H. A Survey of Spectrum Sensing and Algo- rithms for Cognitive Radio Applications [J]. IEEE Communica- tion Survey Tutorials,2009,11(1) .. 116-130. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部