摘要
The relationship between ambient relative humidity H and the position shift of a spectral line was investigated both experimentally and theoretically.An echelle-based ICP emission spectrometer equipped with a CID detector was used for experimental verification of the derived model.The shift of a spectral line is quantitatively described by two defined spectral shift functions: Δλx(x,λ,H)(in the x direction of the CID detector) and Δλy(y,λ,H)(in the y direction of the CID detector).Experimental results indicate that Δλx(x,λ,H) does not change with a variation in ambient relative humidity, but Δλy(y,λ,H) does.A spectral shift equation,i.e.an empirical second-order polynomial equation,can be used to describe the relationship between Δλy(y,λ,H) and H.Based on the classical dipole model,classical mechanics and electrodynamics the empirical spectral-shift equation involving Δλy(y,λ,H) and H was theoretically deduced.The theoretical result is in good agreement with the experimental findings.The theoretical results indicate that the coefficients of the empirical spectral-shift equation are related to the basic physical parameters of materials and the geometric configuration of the echelle CID ICP-AES,and also provide physical meaning to the coefficients of the empirical shift equation obtained experimentally.
The relationship between ambient relative humidity H and the position shift of a spectral line was investigated both experimentally and theoretically.An echelle-based ICP emission spectrometer equipped with a CID detector was used for experimental verification of the derived model.The shift of a spectral line is quantitatively described by two defined spectral shift functions: Δλx(x,λ,H)(in the x direction of the CID detector) and Δλy(y,λ,H)(in the y direction of the CID detector).Experimental results indicate that Δλx(x,λ,H) does not change with a variation in ambient relative humidity, but Δλy(y,λ,H) does.A spectral shift equation,i.e.an empirical second-order polynomial equation,can be used to describe the relationship between Δλy(y,λ,H) and H.Based on the classical dipole model,classical mechanics and electrodynamics the empirical spectral-shift equation involving Δλy(y,λ,H) and H was theoretically deduced.The theoretical result is in good agreement with the experimental findings.The theoretical results indicate that the coefficients of the empirical spectral-shift equation are related to the basic physical parameters of materials and the geometric configuration of the echelle CID ICP-AES,and also provide physical meaning to the coefficients of the empirical shift equation obtained experimentally.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2010年第9期2555-2559,共5页
Spectroscopy and Spectral Analysis
基金
中华人民共和国科技部“在用光谱仪升级改造”任务部分经费支持和美国能源部DE-FG02-98ER14890项目部分经费资助