期刊文献+

基于改进蚁群算法的无人飞行器航迹规划 被引量:6

Route Planning of UAV Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 无人飞行器航迹规划是现代战争中实施远程精确打击,提高飞行器实际作战效能的关键技术。蚁群算法作为一种启发式仿生优化算法,能够有效应用于航迹规划中。针对基本蚁群算法在应用中容易过早陷入局部最优解这一缺点,提出自适应动态双种群蚁群算法的改进策略,通过信息素的震荡变化和挥发系数的自适应调整,扩大搜索空间,提高算法搜索的全局性。并将改进后的算法应用于无人飞行器航迹规划,通过实验仿真,证明了此改进算法在航迹规划应用中的可行性和有效性。 Route planning of UAV is an important technique in long-range precision strikes and improve the combat effectiveness of aircraft.Ant colony algorithm as a heuristic bionic optimization algorithm can be effectively applied to route planning.The prominent shortcoming of the basic ant colony algorithm is easily trapped into local optimal solution.Adaptive dynamic dual population ant colony algorithm is proposed in this paper in order to solve this problem.The concussion change of the pheromone and the adaptive adjustments of the volatile coefficient can expand the search space and improve the overall searching performance.It is proved that the algorithm is feasible and effective in the route planning simulation.
作者 熊瑜 饶跃东
机构地区 桂林空军学院
出处 《计算机与数字工程》 2010年第7期41-44,146,共5页 Computer & Digital Engineering
关键词 航迹规划 蚁群算法 自适应 信息素 route planning ant colony algorithm adaptive pheromone
  • 相关文献

参考文献10

  • 1闵昌万,袁建平.军用飞行器航迹规划综述[J].飞行力学,1998,16(4):14-19. 被引量:109
  • 2Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C] //Proceedings of the 1st European Conference on Artificial Life,1991:134-142. 被引量:1
  • 3Dorigo M.Optimization,learning and natural algorithms[D].Ph.D.Thesis,Department of Electronics,Politecnico diMilano,Italy,1992. 被引量:1
  • 4Dorigo M,Maniezzo V,Coloni A.Antsystem:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cyberneties-PartB,1996,26(1):29-41. 被引量:1
  • 5Timothy W M,Randal W B.Trajectory planning for coordinated rendezvous of unmanned air vehicles.AIAA-2000-4339-CP,2000. 被引量:1
  • 6Kevin B Judd,Timothy W Mclain.Spline based path planning for unmanned air vechicles[J/OL].AIAA 2001-4238.2001. 被引量:1
  • 7段海滨.蚁群算法原理及应用[M].北京:科学出版社,2005.12. 被引量:63
  • 8胡小兵,袁锐,黄席樾,易继军.蚁群算法原理的仿真研究[J].计算机仿真,2004,21(8):125-128. 被引量:16
  • 9周伟,刘粉林,吴灏,王清贤.简单蚁群算法的仿真分析[J].控制与决策,2003,18(3):317-319. 被引量:3
  • 10孙祥,徐流美,吴清编著..MATLAB 7.0基础教程[M].北京:清华大学出版社,2005:386.

二级参考文献11

共引文献186

同被引文献49

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部