期刊文献+

基于改进的PSO和HMM的Web信息抽取算法 被引量:3

A Improved PSO and HMM Algorithm for Web Information Extraction
下载PDF
导出
摘要 针对传统Web信息抽取的隐马尔可夫模型对初值十分敏感和在实际应用中模型参数极易陷入局部最优的问题,提出了一种基于改进的粒子群优化算法的隐马尔可夫模型参数优化模型,用于Web信息抽取.以似然概率值作为适应度函数,使用改进的粒子群优化算法结合Baum-Welch算法对HMM模型参数进行全局优化,实现了Web页面信息的抽取.实验结果表明,该算法在精确率和时间等指标上与现有算法相比具有更好的性能. The traditional HMM for Web information extraction is sensitive to the initial model parameters and easy to lead to a local optimal model in practice.A parameters optimum model algorithm based on improved PSO for HMM is put forward for Web information extraction.The algorithm makes the fitness values as the results of the likelihood values,and combines improved PSO and Baum-Welch algorithm to optimize HMM parameters globally to extract information in Web pages.Experimental results show that the new algorithm improves the performance in precision and time-consuming over the present algorithm.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期65-68,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省科技厅基金项目(102300410198) 河南师范大学青年科学基金(2008qk19,2008qk20)
关键词 PSO HMM WEB信息抽取 Particle Swarm Optimization Hidden Markov Model Web information extraction
  • 相关文献

参考文献8

  • 1Oren Etzioni,Michele Banko.Open information extraction from the web[J].Commun ACM,2008,51(12):68-74. 被引量:1
  • 2罗毅.一种基于HMM和ANN的语音情感识别分类器[J].微计算机信息,2007,23(34):218-219. 被引量:10
  • 3Otterpohl J R.Baum-Welch learning in discrete hidden Markov models with linear factorial constraints[M].Berlin:Springer,2002:. 被引量:1
  • 4Haifeng Li,Thierry Artières,Patrick Gallinari.Data Driven Design of an ANN/HMM System for On-line Unconstrained Handwritten Character Recognition[C].Fourth IEEE International Conference on Multimodal Interfaces,Pittsburgh,2002. 被引量:1
  • 5Bouchaffra D,Tan J.Structural hidden Markov models using a relation of equivalence:application to automotive designs[J].Data Mining and Knowledge Discovery,2006,12:79-96. 被引量:1
  • 6Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proc IEEE Int l Conf on Neural Networks IV Piscataway,Nanjing,1995. 被引量:1
  • 7Shi Y,Eberhart R C.Emp irical Study of Particle Swarm Optimization[C].Proceedings of the 1999 Congress on Evolutionary Computation,Nanjing,1999. 被引量:1
  • 8王浩川,王学军,刘艳春,闻跃华.基于二叉树结构聚类算法的彩色图像分割研究[J].河南农业大学学报,2008,42(4):461-464. 被引量:1

二级参考文献23

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2谷学静,王志良,魏哲华,王超.基于人工心理理论的情感模型构建方法研究[J].微计算机信息,2006,22(02Z):264-266. 被引量:10
  • 3Schuller, Gerhard Rigoll, and Manfred Lang, Hidden Markov Based Speech Recognition, Proceedings of 2003 IEEE International Conference on Acoustics, Speech, &Speech Processing April 6-10, 2003. 被引量:1
  • 4Yi-Lin Lin, Gang Wei, Speech Emotion Based on HMM and SVM, Proceedings of Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21August 2005. 被引量:1
  • 5Dan-Ning Jiang, Lian-Hong Cai, Speech Emotion Classification with the Combination of Statistic Features and Temporal Features. IEEE international conference on Multimedia and Expo, 1968- 1970. 2004 被引量:1
  • 6杨行俊,迟惠生等,语音数字信号处理,电子工业出版社. 被引量:1
  • 7Amlan Kundu and George C.Chen, An Integrated Hybrid Neural Network and Hidden Markov Model Classification For Sonar Signal Classification, IEEE Trans Signal Processing, 1997, 45(10):2556-25 被引量:1
  • 8CHENG H D, JIANG X H, WANG J L. Color image segmentation-based homogram thresholding and regionmerging [ J]. Pattern Recognition ,2002,35:373-393. 被引量:1
  • 9SCLAROFF S, LIU L. Deformable shape detector and description viamodel-based region grouping [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23:475 -488. 被引量:1
  • 10KURUGOLLU F,SANKUR B. HARMANCI A E. Color image segmentation using histogram muhithresholding and fusion[J]. Image and Vision Computing, 2001,19 (13) :915 -928. 被引量:1

共引文献9

同被引文献34

  • 1李永宏,孔江平,于洪志.藏语文-音自动规则转换及其实现[J].清华大学学报(自然科学版),2008,48(S1):621-626. 被引量:20
  • 2林亚平,刘云中,周顺先,陈治平,蔡立军.基于最大熵的隐马尔可夫模型文本信息抽取[J].电子学报,2005,33(2):236-240. 被引量:48
  • 3Skounakis M, Craven M, Ray S. Hierarchical hidden markov models for information extraction[C]//Proceedings of the 18th International Joint Conference on Artificial Intelligence Acaptr lco, Mexico: Morgan Kaufmann, 2003 : 427-433. 被引量:1
  • 4Freitag D, McCallum A, Pereira F. Maximum Entropy Markov models for information extraction and segaTlentation[C]//Proceedings of the Seven teenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann,2000:591-598. 被引量:1
  • 5Bundschus M, DejoriI M, Stetter M, et al. Extraction of semantic biomedical relations from text using conditional random fields [J]. BioMed Central(BMC)Bioinformaties, 2008,9 : 207-220. 被引量:1
  • 6Martens D, Baesens B, et al. Decompositional Rule Extraction from Support Vector Machines by Active Learning[J]. Knowledge and Data Engineering,2008,21(2) : 178-191. 被引量:1
  • 7王坤赤,蒋华.基于语音频谱的共振峰声码器实现[J].现代电子技术,2007,30(21):168-170. 被引量:2
  • 8COLE R A, YANG Hong-yan, MAK B, et al. The contribution of consonants versus vowels to word recognition in fluent speech [ C]//Proc ICASSP 1996. Atlanta: IEEE, 1996: 853. 被引量:1
  • 9KEWLEY-PORT K, BURKLE Z, LEE Jae Hee. Contribution of consonant versus vowel information to sentenceintelligibility for young normal-hearing and elderly hearing-impairedlisteners [J]. Acoustical Society of America, 2007, 122(4): 2365. 被引量:1
  • 10LEWICHI M S. A signal take on speech [J].Nature, 2010, 466(12): 821. 被引量:1

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部