期刊文献+

总变差正则化方法在条形码信号复原中的应用 被引量:1

Application of Total Variation Regularization in Barcode Signal Blind Restoration
下载PDF
导出
摘要 条形码信号的复原是数学物理反问题中的一种病态问题,正则化方法是解决病态问题最常用的方法。研究了信号盲复原的基本原理与方法,并将基于总变差的正则化方法应用到一维条码信号的复原问题中,仿真试验结果表明,该方法复原效果显著。 Restoration of barcode signal is an ill-posed problem in mathematical physical inverse problem;the most successful approach to which is regularization method.Basic theory and method of signal restoration was introduced.And an algorithm of total variation regularization was presented to one dimensional signal restoration.The simulation results showed that the effect of restoration was desirable and remarkable.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2010年第4期554-556,560,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(10647145)
关键词 总变差正则化 信号复原 反问题 total variation regularization signal restoration inverse problems
  • 相关文献

参考文献8

  • 1RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992 (60) :259 -268. 被引量:1
  • 2CHAMBOLLE A, LIONS P L. Image recovery via total variation minimization and related problems[ J]. Numer Math, 1997 (76) : 167 - 188. 被引量:1
  • 3CHAN T F, GOLUB G H, MULET P. A nonlinear primal - dual method for total variation based image restoration [ J ]. SIAM J Sci Computing, 1999 ( 20 ) : 1964 - 1977. 被引量:1
  • 4王凤鹏.模糊条码图像的正则化复原算法[J].光学技术,2006,32(6):932-934. 被引量:4
  • 5邹谋炎著..反卷积和信号复原[M].北京:国防工业出版社,2001:321.
  • 6SELIM E. Blind deeonvolution of bar code signals [ J ]. Inverse Problems,2004 (20) : 121 - 135. 被引量:1
  • 7TODD W. Deblurring and restoration in barcode signal processing [ C ]//SIAM Conference on Imaging Science. Salt Lake City: [ s. n. ] ,2004:2011 - 2018. 被引量:1
  • 8黄小为,吴传生,朱华平.求解不适定问题的TSVD正则化方法[J].武汉理工大学学报,2005,27(2):90-92. 被引量:15

二级参考文献12

  • 1金其年,侯宗义.关于迭代Tikhonov正则化的最优正则参数选取[J].高校应用数学学报(A辑),1996,11(3):321-328. 被引量:6
  • 2Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer, 1996. 被引量:1
  • 3Hanke M. Accelerated Landweber Iterations for the Solution for Ill-posed Problems[J]. Number Math, 1991,60:341~373. 被引量:1
  • 4Hanke M, Groetsch C W. Nonstationary Iterated Tikhonov Regularization[J]. J Opt The Appl, 1998, 98: 37~53. 被引量:1
  • 5Theo Pavlidis,Jerome Swartz,Ynjiun P Wang.Fundamentals of bar code information theory[J].IEEE Transactions on Computer,1990,23 (4):74~86. 被引量:1
  • 6Eugene Joseph,Theo Pavlidis.Waveform recognition with application to bar codes[J].Proceedings of IEEE,1991:129~134. 被引量:1
  • 7Eugene Joseph,Theo Pavlidis.Deblurring of bilevel waveforms[J].IEEE Transactions on Image Processing,1993.2(2):223~235. 被引量:1
  • 8Wiliam Turin,Robert A Boie.Bar code recovery via the EM algorithm[J].IEEE Transactions on Signal Processing,1998,46 (2):354~363. 被引量:1
  • 9Selim Esedoglu.Blind deconvolution of bar code signals[J].Inverse Problems,2004,20:121~135. 被引量:1
  • 10李功胜,马逸尘,高登攀,庄弘炜.改进的Tikhonov正则化及其正则解的最优渐近阶估计[J].系统科学与数学,2002,22(2):158-167. 被引量:6

共引文献17

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部