摘要
高性能的伺服控制除了需要高质量的控制器,还需要高质量的反馈信息。对于光电跟踪系统,通过位置和电流传感器可以提供位置和电流信息,而速度信息则需要通过处理测量信息得到。传统的差分方法会放大位置信息中的量化噪声,从而降低光电跟踪系统的精度。介绍了全维状态观测器及其基本原理,结合伺服控制系统电机模型架构,设计了一种线性速度估计器,并讨论了其参数选择问题。采用抗积分饱和PI控制器和积分分离PI控制器作为三环控制回路的控制器,在某型号光电跟踪系统对该算法进行了实验。实验结果证明,采用该算法的伺服控制系统基本无超调,上升时间0.43s,稳定时间0.65s,跟踪精度为1.78″,完全满足实际工程要求。
High performance servo control needs not only high quality controllers, but also the precious feedback signals. In the photoelectronic tracking system, the position and current signals can be acquired by the sensors, but the velocity information is derived from the measured position. The traditional back difference method for getting the velocity may magnify the quantization noise which will decrease the precision of the photoelectronic tracking system. The full-state observer and theory are introduced in this paper. Based on the motor model structure of the servo control, a linear velocity estimator is designed. And its parameters selection are discussed. Using the anti-windup PI controller and integral separation PI controller as the three loop controllers, the experiment of the method is made on a type of the photoelectronic tracking system. The result shows that the servo control system has nearly overshoot, rising time is 0. 43 s, setting time is 0. 65 s and the tracking precision is 1.78", which completely satisfies the project requirements.
出处
《光学与光电技术》
2010年第4期48-51,共4页
Optics & Optoelectronic Technology
基金
中国科学院知识创新工程资助项目
关键词
光电跟踪系统
全维状态观测器
PI控制器
量化噪声
向后差分
photoelectronic tracking system
full-state observer
PI controller
quantized noise
back difference