期刊文献+

Effects of aging parameters on hardness and electrical conductivity of Cu-Cr-Sn-Zn alloy by artificial neural network 被引量:1

Effects of aging parameters on hardness and electrical conductivity of Cu-Cr-Sn-Zn alloy by artificial neural network
下载PDF
导出
摘要 In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively. In order to predict and control the properties of Cu-Cr-Sn-Zn alloy, a model of aging processes via an artificial neural network (ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up. The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy. Aged at 470-510 ℃ for 4-1 h, the optimal combinations of hardness 110-117 (HV) and electrical conductivity 40.6-37.7 S/m are available respectively.
出处 《Journal of Central South University》 SCIE EI CAS 2010年第4期715-719,共5页 中南大学学报(英文版)
基金 Project(2006AA03Z528) supported by the National High-Tech Research and Development Program of China Project(102102210174) supported by the Science and Technology Research Project of Henan Province,China Project(2008ZDYY005) supported by Special Fund for Important Forepart Research in Henan University of Science and Technology
关键词 Cu-Cr-Sn-Zn alloy aging parameter HARDNESS electrical conductivity artificial neural network 人工神经网络模型 锡锌合金 电导率 铜铬 硬度 时效工艺 非线性关系 合金性能
  • 相关文献

参考文献3

二级参考文献28

  • 1肖冬荣,侯健敏.神经网络在故障诊断中的应用[J].中南大学学报(自然科学版),2003,34(z1):206-208. 被引量:3
  • 2丁德馨,张志军.Artificial neural network based inverse design method for circular sliding slopes[J].Journal of Central South University of Technology,2004,11(1):89-92. 被引量:4
  • 3易正明,周孑民,刘志明,李元峰.基于图像处理的回转窑火焰监测系统研究[J].化工自动化及仪表,2005,32(5):54-57. 被引量:6
  • 4LIU H J, FUJII H, MAEDAA M, NOGI K. Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy [J]. Journal of Materials Processing Technology, 2003, 142: 692-696. 被引量:1
  • 5LAKSHMINARAYANAN A K, BALASUBRAMANIAN V, ELANGOVAN K. Effect of welding processes on tensile properties of AA6061 aluminium alloy joints [J]. International Journal of Advanced Manufacturing Technology, 2008 (Available online). DOI: 10.1007/s00170-007-1325-0. 被引量:1
  • 6GRUM J, SLABE J M. The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni-Co-Mo surfaced layers [J]. Journal of Materials Processing Technology, 2004, 155:2026 2032. 被引量:1
  • 7GUNARAJ V, MURUGAN N. Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes [J]. Journal of Material Processing Technology, 1999, 88: 266-275. 被引量:1
  • 8MANONMANI K, MURUGAN N, BUVANASEKARAN G. Effect of process parameters on the weld bead geometry of laser beam welded stainless steel sheets [J]. Int J Joining Mater, 2005, 17(4): 103-109. 被引量:1
  • 9BALASUBRAMANIAN M, JAYABALAN V, BALASUBRAMANIAN V. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy [J]. Materials and Design, 2008, 29(1): 92-97. 被引量:1
  • 10PALANI P K, MURUGAN N. Optimization of weld bead geometry for stainless steel claddings deposited by FCAW [J]. Journal of Materials Processing Technology, 2007, 190:291-299. 被引量:1

共引文献138

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部