期刊文献+

一类抛物型m-Laplacian方程的全局吸引子

Existence of Global Attractor for a Class of m-Laplacian Parabolic Equation
下载PDF
导出
摘要 本文讨论一类带m-Laplacian算子的拟线性抛物型方程在有界区域上的渐近行为,证明了该类方程在Lp(Ω)中存在全局吸引子,其中p与方程非线性项增长指数无关。 In this papcr, we study the long - time behavior of solutions for a class of quasilinear parabolic equation in a bounded domain. We prove the existence of a global attractor in L^P (Ω) for the given equation and p is independent of the order of polynomial of nonlinear tenn.
出处 《长春师范学院学报(自然科学版)》 2010年第4期1-5,共5页 Journal of Changchun Teachers College
基金 伊犁师范学院科研计划项目(20080QN008) 新疆维吾尔自治区高校科学研究重点项目(XJEDU2008I35)
关键词 全局吸引子 m—Laplacian方程 渐近紧性 global attractor m - Laplacian equation asymptotic compactness
  • 相关文献

参考文献9

  • 1R.Temam.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M].New York:Springer-Verlag,2000:17-180. 被引量:1
  • 2A.V.Babin,M.I.Vishik.Attractors of Evolution Equations[M].Amsterdam:North-Holland,1992:9-126. 被引量:1
  • 3O.A.Ladyzhenskaya.Attractors for Semigroups and Evolution Equations[M].Cambridge:Cambridge University Press,1991:15-196. 被引量:1
  • 4M.H.Yang,C.Y.Sun,C.K.Zhong.Global attractors for p-Laplacian equation[J].J.Math.Anal.Appl.,2007,327(2):1130-1142. 被引量:1
  • 5Caisheng Chen.On global attractor for m-Laplacian parabolic equation with local and nonlocal nonlinearity[J].J.Math.Anal.Appl.,2008,337(1):318-332. 被引量:1
  • 6C.S.Chen,R.Y.Wang.L∞ estimates of solution for the evolution m-Laplacian equation with initial value in Lq(Ω)[J].NonlinearAnal.,2002,48(10):607-616. 被引量:1
  • 7E Dibenedetto.Degenerate Parabolic Equations[M].New York:Springer-Verlag,1993:230-258. 被引量:1
  • 8Y.Ohara.L∞ estimates of solutions of some nonlinear degenerate parabolic equation[J].Nonlinear Analysis:Theory,Mthods&Applications,1992,18(5):413-426. 被引量:1
  • 9M.Nakao,C.S.Chen.Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term[J].J.Diff.Equations,2000,162(2):224-250. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部