期刊文献+

引入持仓量的沪铜指数长记忆波动性研究 被引量:2

Based on Long Memory Research of Copper Index Fluctuation with Introducing Positions
下载PDF
导出
摘要 通过协整关系检验、误差修正模型、向量自回归模型、格兰杰因果关系检验、脉冲响应函数证明了在建立模型时引入持仓量序列的必要性。运用修正R/S分析,建立了沪铜指数收益率波动的ARFIMA、FI-GARCH、ARFIMA-FIGARCH模型,并运用此种模型对沪铜指数的收益率序列rt、收益率波动序列|rt|及残差序列|εt|进行相关研究和分析,结果表明:ARFIMA(0,d1,0)-FIGARCH(1,d2,1)模型的预测效果比较好。 This paper introduces Cointegration test、Modified model for error、Vector autoregression、 Granger causality test、Impulse response function,and proves the necessity in the process of establishment for models with the sequence of positions.Using of modified R/S methods,we have built up the ARFIMA models、FIGARCH models、ARFIMA-FIGARCH models for the fluctuation of copper index earnings,and have given the analysis of the sequence of earnings rt、the sequence of fluctuation for earnings|rt|、the sequence of residual|εt|.Futhermore,we can make more precise forecast with the models ARFIMA(0,d1,0)-FIGARCH(1,d2,1).
作者 杨桂元 刘坤
出处 《统计与信息论坛》 CSSCI 2010年第8期88-94,共7页 Journal of Statistics and Information
基金 教育部人文社会科学研究项目<基于风险约束的委托资产组合管理PBF合同研究>(08JA630003)
关键词 期货 长记忆 ARFIMA模型 FIGARCH模型 ARFIMA-FIGARCH模型 futures long memory ARFIMA models FIGARCH models ARFIMA-FIGARCH models
  • 相关文献

参考文献10

二级参考文献20

  • 1Peters E E 王小东(译).资本市场的混沌与秩序[M].北京:经济科学出版社,1999.21,66-79. 被引量:1
  • 2Ibbotson R G, Ritter J R. Initial public offerings,Chapter 30 of North-Holland Handbooks of Operations[J]. Research and Management Science, 1995,9: 280 - 287. 被引量:1
  • 3滋维.博迪,亚历克斯.凯恩,艾伦J马库斯.投资学[M].朱宝宪,吴洪,赵东青,等,译.北京:机械工业出版社,2000:423-464. 被引量:1
  • 4蒂姆·科勒,马克·戈德哈特,戴维·威塞尔斯,高建,魏平,朱晓龙,等,译.价值评估--公司价值的衡量与管理[M].北京:电子工业出版社,2007.56-79. 被引量:2
  • 5Peng K K,Phys Rev E,1994年,49卷,1685页 被引量:1
  • 6B.B.Mendelbrot, J.W.Van, Ness: Fractional Brownian Motion, -Fractional NoiSe and Applications.SIAN Rev, 1968, 10: 422-437. 被引量:1
  • 7E.Peters: Fractal Market Analysis, John Wiley & Sons, INC. -1994: 61-65. 被引量:1
  • 8H.E.Hurst: Long-term Storate of Reservoirs. Transections of the American Society of Civil Engineers.1951, 116: 87-92. 被引量:1
  • 9E.Peterd: R/S Analysis Using Logrithmic Returns: A Technical Note.Financial Analysts Journal 1991b: 341-349. 被引量:1
  • 10H. Packard, J.P.Crutchfisld:Geometry from a Time Series. Physical Review letters, 1980, 45:712-716. 被引量:1

共引文献74

同被引文献45

  • 1石柱鲜,吴泰岳.中国股票市场“周内效应”的再研究[J].数理统计与管理,2005,24(3):93-99. 被引量:20
  • 2张屹山,方毅,黄琨.中国期货市场功能及国际影响的实证研究[J].管理世界,2006,22(4):28-34. 被引量:85
  • 3王春峰,程鹏飞,房振明.中国股市流动性与波动性关系的实证研究[J].北京理工大学学报(社会科学版),2007,9(4):63-66. 被引量:6
  • 4PENNINGS J,MEULENBERG M. Hedging efficiency:a futures exchange management approach[J]. Journal of Futures Markets,1997,17:599-615. 被引量:1
  • 5WEI G, ZHENG J G. Trading activity and bid -ask spreads of individual equity options [J]. Journal of Banking and Finance,2010,34(12):2897-2916. 被引量:1
  • 6CHORDIA T,HUH S, SUBRAHMANYAM A. The cross -section of expected trade activity [J]. Review of Financial Studies,2007,20(3):709-740. 被引量:1
  • 7CHORDIA T, SARKAR A, SUBRAHMANYAM A. An empirical analysis of stock and bond liquidity[J]. The Review of FinancialStudies,2005,18(1):85-129. 被引量:1
  • 8LAMOUREUX C,LASTRAPES W. Heteroskedasticity in stock return data : volume versus GARCH effect[J]. Journal of Finance,1990,45(l):221-229. 被引量:1
  • 9PARK B J. Surprising information, the MDH, and the relationship between volatility and trading volume [J]. Journal of FinancialMarkets ,2010,13(3): 344-366. 被引量:1
  • 10BESSEMBINDER H, SEGUIN P J. Price volatility, trade volume, and market depth : evidence from futures markets[J]. Journal ofFinancial and Quantitative Analysis, 1993 ,28 (1) : 21 -39. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部