摘要
针对以模糊Petri网为理论基础的网络攻击模型BBFPAN自学习能力差的缺点,提出了一种新的适用于对攻击模型BBFPAN进行层次式划分的分层算法,为将神经网络理论引入攻击模型的研究奠定了基础。
Attacking model BBFPAN based on fuzzy Petri net has some drawback such as the lack of learning mechanism. A delaminating algorithm which can partition the BBFPAN into several levels is presented. This algorithm can be applied to the study about the BBFPAN using the neural network.
出处
《软件导刊》
2010年第2期38-39,共2页
Software Guide
基金
渭南师范学院研究生科研项目(09YKZ020)
关键词
分层
网络安全
攻击建模
Delaminate
Network Security
Attack Modeling