期刊文献+

遗传算法改进的BP神经网络在协同创新评价中的应用 被引量:4

Application of BP neural network improved by genetic algorithm in evaluation of collaborative innovation work
下载PDF
导出
摘要 为了解决客户协同创新中协同工作效率难于评价的问题,提出了一种用遗传算法优化的神经网络对客户协同产品创新进行评价的评价模型:在评价指标方面,设计了一套包括效益、效率和过程的18个指标的评价体系;在评价算法方面,将遗传算法与BP神经网络结合起来,设计了遗传算法改进的BP神经网络算法。该模型充分利用遗传算法的全局搜索能力强与神经网络的局部搜索能力强的特点,克服了遗传算法局部收敛与神经网络收敛速度较慢的问题,是一种非常适用于评价协同工作的模型。最后通过实例训练,证明了该模型的有效性与可行性。 In order to solve problem of efficiency evaluation of collaborative work in customer collaborative innovation,The evaluation model which uses neural network based on genetic algorithm to evaluate customer collaborative product innovation was presented.In the evaluation indicators,we designed a set of evaluation system which included 18 indicators.In the evaluation algorithms,we combined BP neural network and genetic algorithm,and designed a set of BP neural network algorithm improved by genetic algorithm.The algorithm made fully use of genetic algorithm global searching and BP network local searching,overcomed the local convergence of genetic algorithm and lower efficiency of neural network convergence.Finally,a numerical example was use to illustrate the feasibility and availability of the evaluation model.
出处 《机械》 2010年第8期5-9,共5页 Machinery
基金 教育部高校博士点科研基金资助项目(20090191110004)
关键词 遗传算法 BP神经网络 客户协同创新 genetic algorithm BP neural network customer collaborative innovation
  • 相关文献

参考文献14

  • 1Thomke, S. H, E. von Hippel. Customers as Innovators : A New Way to Create Value[J]. Harvard Business Review, 2002, 80 ( 4 ) : 74-81. 被引量:1
  • 2Prahalad, C. K., Ramaswamy, V. The Future of Competition: Co-Creating Unique Value with Customers[M]. Harvard Business School Press, 2004. 被引量:1
  • 3E. von Hippel. Democratizing Innovation[M]. MIT Press, 2005. 被引量:1
  • 4Jeppesen, L. B. Molin. M. Consumers as co-developers: Learning and innovation outside the firm[J]. Technology Analysis and Strategic Managemen, 2003, 15 (3) : 363-383. 被引量:1
  • 5Franke, N., Piller, F. Value Creation by Toolkits for User Innovation and Design: The Case of the Watch Market[J]. Journal of Product Innovation, 2004, 21: 401-415. 被引量:1
  • 6宛西原,刘飞,尹超,郑华林.基于客户的大规模定制产品的协同设计研究[J].计算机集成制造系统-CIMS,2002,8(12):936-940. 被引量:9
  • 7Dan X. Houston, Gerald T. Mackulak, James S. Collofello. Stochastic simulation of risk factor potential effects for software development risk management[J]. The Journal of Systems and Software, 2001, 59 ( 3 ) : 247-257. 被引量:1
  • 8葛哲学,孙志强.神经网络理论与MATLABR2007[M].北京:电子工业出版社,2007. 被引量:5
  • 9高隽编著..人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003:209.
  • 10黄浩,宋瀚涛,陆玉昌.基于小生境遗传算法的贝叶斯网络结构学习算法研究[J].计算机应用研究,2007,24(4):100-103. 被引量:5

二级参考文献54

共引文献437

同被引文献47

引证文献4

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部