期刊文献+

基于主元分析的人脸识别方法研究 被引量:3

Research on Face Recognition Methods Based on Principal Component Analysis
下载PDF
导出
摘要 研究了利用主元分析进行人脸识别的方法。将人脸图像训练集进行主元分析,对得到的变换矩阵应用奇异值分解提取特征子空间,把训练图像和测试图像投影到子空间上,选择分类器进行人脸识别。实验表明,主元分析能很好地在子空间下提取出人脸图像的特征信息,从而实现人脸识别。 A method for face recognition based on principal component analysis scribed. Transforming face image training sets using PCA, subspace of feature is extracted from matrix by singular value decomposition, the training images and test images is projected in the (PCA) is dethe transformation subspaee, select classifier for face recognition. Experimental results show that PCA is well in the subspace of face images to extractfeature information in order to achieve face recognition.
出处 《科学技术与工程》 2010年第24期6063-6065,共3页 Science Technology and Engineering
关键词 主元分析 人脸识别 奇异值分解 principle component analysis face recognition singular value decomposition
  • 相关文献

参考文献4

二级参考文献8

  • 1W Zhao, P J Phillips. Face Recognition :A Literature Survey[EB/OL], http://citeseer.nj. nec. oom/374297, html,2001 - 10 -12 被引量:1
  • 2Tefas A, Kotropoulos C, Pitas I. Using Support Vector Machines to Enhance the Performance of Elastic Graph Matching for Face Authentication. IEEE Trans. on Pattern Analysis and Machine Intelligence,2001, 23(7): 735-746 被引量:1
  • 3Yang M H. Face Recognition Using Kernel Methods. Advances in NIPS, 2002, 14(23) 被引量:1
  • 4Baek K, Draper B A, Beveridge J R, et al. PCA vs. ICA: A Comparison on the FERET Data Set. CVPRIP in Conjunction with the 6th JCIS, Durham, North Carolina, 2002-03-08 被引量:1
  • 5Samaria F, Harter A. Parametrisation ofa Stochastic Model for Human Face Identification. In: Proceedings of IEEE Workshop on Applications on Computer Vision, 1994 被引量:1
  • 6Lu X, Wang Y, Jain A K. Combining Classifiers for Face Recognition.Proc. ICME 2003, IEEE International Conference on Multimedia &Expo, Baltimore, MD, 2003-07-06, Ⅲ:13-16 被引量:1
  • 7杨奕若,王煦法,杨未来.人脸全局特征识别研究[J].小型微型计算机系统,1997,18(11):36-42. 被引量:9
  • 8张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报(A辑),2000,5(11):885-894. 被引量:260

共引文献24

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部