期刊文献+

改进的独立分量分析算法 被引量:11

Improved Algorithm for Independent Component Analysis
下载PDF
导出
摘要 对独立分量分析算法的基本理论和FastICA算法进行了简要介绍.传统的FastICA算法只具有二阶的收敛速度,为了提高独立分量分析算法的收敛速度,减少迭代次数和运行时间,提出了一种改进的独立分量分析算法——五阶收敛的牛顿迭代法.对牛顿迭代算法加以修正,使改进的独立分量分析算法具有五阶的收敛速度.图像信号分离仿真实验表明,改进算法与传统的FastICA算法在分离效果相当的情况下,明显减少了传统的FastICA算法的迭代次数和运行时间,提高了收敛速度和运行效率. The basic theory of independent component analysis(ICA) and the FastICA algorithm are briefly described.Conventional FastICA algorithm has only a second-order convergence rate,which has to be improved to reduce the iteration steps and running time.An improved ICA algorithm is therefore proposed,i.e.,the Newton's iteration method with a fifth-order convergence.It is actually a modified Newton's iteration method to enable the improved FastICA algorithm to have fifth-order convergence rate.The simulation results of separating an image signal from others showed that although the algorithm thus improved has the same separating effect as conventional FastICA algorithm,it can greatly reduce the iteration steps and running time further than FastICA,thus increasing the convergence rate and improving the operation efficiency.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第8期1086-1088,1097,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(20072025)
关键词 独立分量分析 定点算法 牛顿迭代法 负熵 最速下降法 independent component analysis fixed-point algorithm Newton's iteration method negentropy steepest descent method
  • 相关文献

参考文献8

二级参考文献21

  • 1张荣,薛国民.修正的三次收敛的牛顿迭代法[J].大学数学,2005,21(1):80-82. 被引量:26
  • 2李季,严东超.BP神经网络改进算法在电气故障诊断系统中的应用[J].电力科学与工程,2005,21(1):69-72. 被引量:21
  • 3Hyvarinen A.Independent Component Analysis: Algorithms and Applications[J].Neural Networks,2000,13:411-430. 被引量:1
  • 4Lee Te-Won.Independent Component Analysis Theory and Applications[M].KLUWER ACADEMIC PUBLISHERS,1998. 被引量:1
  • 5Hyvarinen A.Survey on Independent Component Analysis[J].Neural Computing Surveys,1999,2:94-128,. 被引量:1
  • 6Ristaniemi T.Synchronization and Blind Signal Processing in CDMA Systems [D].Ph.D Thesis,University of Jyvaskyta,Finland,2000. 被引量:1
  • 7Lee T,Girolami M,Sejnowski T J.Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J].Neural Computation,1999,11 (2):417-441. 被引量:1
  • 8Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10 (3):626-634. 被引量:1
  • 9Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9 (7):1483-1492. 被引量:1
  • 10Vicente Zarzoso.Blind Separation of Independent Sources for Virtually Any Source Probability Density Function[J].IEEE Transactions on Signal Processing,1999,47 (9):2419-2432. 被引量:1

共引文献29

同被引文献126

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部