期刊文献+

带障碍物情况下两点间最短距离的求解方法 被引量:3

Solution of Shortest Distance Between Two Points in Presence of Obstacles
下载PDF
导出
摘要 带障碍物聚类问题的关键是求解存在障碍物情况下两点间的最短距离。针对该问题提出边缘可见点概念,给出一种解决方法,从一点依次寻找障碍物上的边缘可见点,顺次连接这些点,可以形成上边缘最短路径和下边缘最短路径,最终的最短路径是这两者中的较短者。实验结果验证了该方法的有效性。 A key of the Clustering with Obstructed Distance(COD) problem is solving the shortest distance between two points in the presence of obstacles.Aiming at this problem,this paper presents the concept of edge visible points,and proposes a solution to the problem.It departs from the point,and finds edge visible points on the set of obstructions,and sequential connects these points.It forms a shortest path along upper edge and a shortest path along lower edge,the final shortest path is the shorter of the two.Experimental results verify the effectiveness of the method.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第16期171-173,共3页 Computer Engineering
基金 上海市高校选拔培养优秀青年教师科研专项基金资助项目(09A112)
关键词 聚类 障碍物 凸多边形 边缘可见点 clustering obstacles convex polygon edge visible point
  • 相关文献

参考文献4

  • 1Tung A K H,Hou J,Han J.Spatial Clustering in the Presence of Obstacles[C] //Proc.of the 17th International Conference on Data Engineering.Heidelberg,Germany:[s.n.] ,2001. 被引量:1
  • 2Zahn C.Graph-theoretical Methods for Detecting and Describing Gestalt Clusters[J].IEEE Transactions on Computers,1971,20(1):68-86. 被引量:1
  • 3Ng R,Han J.Efficient and Effective Clustering Methods for Spatial Data Mining[C] //Proc.of VLDB'94.Santiago,Chile:[s.n.] ,1994. 被引量:1
  • 4Han J, Kamber M. Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001. 被引量:4

共引文献3

同被引文献19

  • 1杨忠,鲍明,张阿舟.求解中国旅行商问题的新结果[J].数据采集与处理,1993,8(3):177-184. 被引量:10
  • 2王东,郭兆正.机器人避障功能的设计[J].长春师范学院学报(自然科学版),2005,24(6):44-46. 被引量:3
  • 3范明,范宏建.数据挖掘导论[M].北京:人民邮电出版社,2007. 被引量:3
  • 4卢炎生,娄强.障碍空间里基于密度的快速聚类算法[J].小型微型计算机系统,2007,28(11):1976-1980. 被引量:4
  • 5Tung A K H,Hou J,Han J.Spatial Clustering in the Presence of Obstacles[C].Proc.17th Int'1 Conf.on Data Engineering,Washington:IEEE Computer Society,2001:359-367. 被引量:1
  • 6Estivill-CastroV,IckjaiLee.Autoclust+:Automatic clustering of point-data sets in the presence of obstacles[J].Temporal,Spatial and Spatio-Temporal Data Mining,2000,20(7):133-146. 被引量:1
  • 7Zai'ane O R,Lee C H.Clustering Spatial Data When Facing Physical Constraints[C].Proc.2nd IEEE Int'1 Conf.on Data Mining,Washington:IEEE Computer Society,2002:737-740. 被引量:1
  • 8WangX,Rostoker C,Hamilton H J.Density-based Spatial Clustering in the Presence of Obstacles and Facilitators[C].The 8th European Conference on Principles and Practice of Knowledge Discovery in Databases,2004:446-458. 被引量:1
  • 9Sun J,Feng B,Xu W B.Particle Swarm Optimization with Particles Having Quantum Behavior[C].Proceedings of2004 Congress on Evolutionary Computation,2004:325-331. 被引量:1
  • 10Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms[M].New York:Plenum,1981. 被引量:1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部