期刊文献+

基于分段线性方法的瓦斯浓度时间序列模式表示

Pattern Representation of Gas Concentration Time Series Based on Piecewise Linear Method
下载PDF
导出
摘要 指出直接采用原始瓦斯浓度时间序列进行短期浓度预测、相似性查询、时间序列分类和聚类等数据挖掘工作不但效率低下,而且会影响时间序列数据挖掘的准确性和可靠性;提出了一种采用分段线性方法的时间序列模式表示方法。采用分段线性表示方法对瓦斯浓度时间序列进行模式表示后可换来较小的存储和计算代价,只保留了时间序列的主要形态,去除了细节干扰,更能反映出时间序列的自身特征,有利于提高数据挖掘的效率和准确性。 The paper indicated it not only has low efficiency of data mining to directly use original gas concentration time series to forecast short-term concentration,query similarity and classify and cluster time series,but also affects accuracy and reliability of data mining of time series.It put forward a pattern representation method of gas concentration time series based on piecewise linear method.By use of the piecewise linear method to make pattern representation of gas concentration time series,gas data storage and cost of count are smaller,only main form of gas concentration time series is reserved,and detailed interferes are went out,so the results of pattern nopresentation can reflect itself characteristics of gas concentration time series and and the method is good for improving efficiency and accuracy of data mining.
出处 《工矿自动化》 2010年第8期41-44,共4页 Journal Of Mine Automation
关键词 瓦斯浓度 数据挖掘 时间序列 模式表示 分段线性表示 gas concentration data mining time series pattern representation piecewise linear representation
  • 相关文献

参考文献8

二级参考文献16

  • 1汪永东,陈颖.模糊证据理论及其在信息融合中的应用[J].工矿自动化,2006,32(5):32-34. 被引量:6
  • 2Li D,Knowledge Based Syst,1998年,10期,431页 被引量:1
  • 3Li D,Proc Second Pacific-Asia Conf Knowledge Discovery & Data Mining.Melbourne,1998年,392页 被引量:1
  • 4Xia B B,Master dissertation,1997年 被引量:1
  • 5Li D,Logic Programming and Soft Computing,1997年 被引量:1
  • 6Agrawal R,Proc Twenty-First International Conference on Very Large Data Bases.San Francisc,1995年,490页 被引量:1
  • 7DONOHO L,JOHNSTONE I.Ideal Spatial Adaptation by Wavelet Shrinkage[J].Biometrika,1994,81 (3):425-455. 被引量:1
  • 8GAMBERGERA D, LAVRAC N, KRSTACIC G. Active Sub-group Mining : A Case Study in Coronary Heart Disease Risk Group Detection [J]. Artificial Intelligence in Medicine,2003, 28:27-57. 被引量:1
  • 9ROIGER R J.GEATZ M W.数据挖掘教程[M].翁敬农,译.北京:清华大学出版社,2003:36-37. 被引量:6
  • 10文鸿雁,唐诗华,林文介,张立强.基于小波变形分析模型[J].桂林工学院学报,1999,19(4):339-343. 被引量:16

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部