期刊文献+

非参数核密度估计视频目标空域定位技术研究 被引量:2

Video Object Spatial Locating Technology Based on Nonparametric Kernel Density Estimation
下载PDF
导出
摘要 针对智能视频监控场合对视频运动目标定位的需求,本文提出了一种基于非参数核密度估计的视频运动目标空域定位技术。该技术先对代表视频运动目标的前景样本点进行非参数核密度估计,选择具有最高密度指标的样本点为第一个目标中心,然后通过修正样本点的密度估计值,逐步实现对视频运动目标的空域定位。本文的方法是减法聚类视频运动目标定位技术的进一步推广。推广后的定位方法,可根据具体的目标定位场合,灵活选择核函数对样本点进行核密度估计。实验表明,本文方法具有良好定位效果,同时,在样本点的密度估计上更具灵活性。 To satisfy the need of video moving object locating in intelligent video surveillance scenes,video moving object locating technology based on nonparametric kernel density estimation is proposed.Nonparametric density estimation operation is firstly used on each foreground sample point that stands for video moving objects,and the sample point which has maximum density values is chosen as the first object center.And then other positions of video moving objects are gradually located by modifying the density value of sample point.This object locating method based on kernel density estimation is a further development of subtractive clustering object locating method.Using this method,kernel function could be flexibly chosen to estimate sample point's density values according to different locating application scenes.Experiment results show that the proposed method has much more flexibility in sample point's density estimation with satisfying locating results.
出处 《光电工程》 CAS CSCD 北大核心 2010年第8期12-18,共7页 Opto-Electronic Engineering
基金 浙江省重大科技专项(优先主题工业项目)资助项目(2008C13076) 校科研基金项目(KYS055609080)
关键词 非参数密度估计 核密度估计 视频目标定位 视频目标检测 nonparametric density estimation kernel density estimation video object locating video object detection
  • 相关文献

参考文献11

二级参考文献54

  • 1KONG Wan-zeng,ZHU Shan-an.Multi-face detection based on downsampling and modified subtractive clustering for color images[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(1):72-78. 被引量:10
  • 2吴蓓,张焰,陈闽江.基于负荷模糊聚类的电压稳定概率评估[J].电力系统自动化,2007,31(4):23-27. 被引量:22
  • 3Chiu S L. Fuzzy model identification based on cluster estimation [J]. Intelligent Fuzzy Systems(S1064-1246), 1994, 2: 267-278. 被引量:1
  • 4Sathit N, Peraphon S, William R. Fuzzy subtractive clustering based indexing approach for software components classification [J]. Journal of Computer and Information Science(S0091-7036), 2004, 5(1): 63-72. 被引量:1
  • 5Eftekhari M, Katebi S D. Extracting compact fuzzy rules for nonlinear system modeling using subtractive clustering, GA and unscented filter [J]. Applied Mathematieal Modelling(S0307-904X), 2008, 32(12): 2634-2651. 被引量:1
  • 6Kim D, LEE K, LEE D, et al. A kernel-based subtractive clustering method [J]. Pattern Recognition Letters(S0167-8655), 2005, 26(7): 879-891. 被引量:1
  • 7YANG T, Li S, PAN Q, et al. Real-time and accurate segmentation of moving objects in dynamic scene[J].IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(6): 796- 812. 被引量:1
  • 8CHIU S. Fuzzy model identification based on cluster estimation[J]. Journal of Intelligent and Fuzzy Systems, 1994, 2(3): 267-278. 被引量:1
  • 9SATHIT N, PERAPHON S, WILLIAM R. Fuzzy subtractive clustering based indexing approach for software components classification[J]. Journal of Computer and Information Science, 2004, 5 (1) : 63 - 72. 被引量:1
  • 10PEREIRA C, DOURADO A. Application of a neurofuzzy network with support vector learning to a solar power plant[M]. Almeria, Espanha: 2nd IHP Workshop, 2002. 被引量:1

共引文献67

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部