期刊文献+

一种改进的聚类方法在异常检测中的应用 被引量:4

Implementation of an Anomaly Detection Model Based on Improving Clustering Analysis
下载PDF
导出
摘要 入侵检测系统是一种积极主动的安全防护技术,它是信息安全保护体系结构中的一个重要组成部分.异常检测是入侵检测的一种方法,因其能够检测出未知的攻击而受到广泛的研究.以基于数据挖掘的异常检测技术为研究内容,以提高异常检测的检测率、降低误报率为目标,以聚类分析为主线,提出了一种改进的聚类检测算法和模型,并进行仿真实验.算法首先去除了数据集中明显的噪声和孤立点,通过分裂聚类、合并聚类以及利用超球体的密度半径确定k个初始聚类中心,以减小初始k值的选取对聚类结果造成的影响,提高异常检测效率,并以此构造入侵检测模型.利用KDD CUP 1999数据集对模型进行实验测试,并对改进算法的效果进行了对比和分析.实验证明,新的检测系统具有良好的性能. IDS(Intrusion Detection system) is an active and driving defense technology. This paper mainly focuses on intrusion detection based on data mining. The aim is to improve the detection rate and decrease the false alarm rate, and the main research method is clustering analysis. The algorithm and model of ID are proposed and corresponding simulation experiments are presented. Firstly, a method to reduce the noise and isolated points on the data set was advanced. By dividing and merging clusters and using the density radius of super sphere, an algorithm to calculate the number of the Cluster Center was given. By the more accurate method of finding K clustering center, an anomaly detection model was presented to get better detection effect. This paper used KDD CUP 1999 data set to test the performance of the model. The results show the system has a higher detection rate and a lower false alarm rate, it achieves expectant aim.
作者 李涵
出处 《微电子学与计算机》 CSCD 北大核心 2010年第8期66-69,共4页 Microelectronics & Computer
基金 北京市教委科技创新平台基金项目(PXM2008-014224-067420) 北京信息科技大学科研水平提高项目(5028123900)
关键词 聚类 入侵检测 K-平均 异常检测 clustering analysis intrusion detection K-means anomaly detection
  • 相关文献

参考文献6

  • 1Lee W K,Stolfo S J,Mok K W. A data mining framework for building intrusion detection models[ C]//Proceeding of the IEEE Symposium on Security and Privacy. California, IEEE Computer Society Press, 1999:120- 132. 被引量:1
  • 2Erbaeher R F, Walker K L, Frincke D A. Intrusion and misuse detection in large-scale systems[J]. IEEE Computer Graphics and Applications, 2002,22 (1) : 38 - 47. 被引量:1
  • 3Richard J Hathaway,James C Bezdek. Extending fuzzy and probability clustering to very large data sets[ J ]. Computational Statistics & Data Analysis,2006,51(1):215-234. 被引量:1
  • 4Hansen P, Mladenovic N. J- means: a new local search heuristic for minimum sum - of - squares clustering [ J ]. Pattern Recognition,2002,34(2) :405 - 413. 被引量:1
  • 5LI Han,ZHANG Nan,BAO Lihui.Using an Improved Clustering Method to Detect Anomaly Activities[J].Wuhan University Journal of Natural Sciences,2006,11(6):1814-1818. 被引量:3
  • 6University of California. KDD CUP 1999 dataset [ EB/ OL]. (1999 - 10 - 28) [2010 - 1 - 20]. http://kdd, ies. uci. edu/databases/kddcup99/kddcup99, html. 被引量:1

二级参考文献10

  • 1Xian Ji-qing,Lang Feng-hua,Tang Xian-lun.A novel Intrusion Detection Method based on clonal selection clustering algorithm[].the th International Conference on Machine Learning and Cybernetics.2005 被引量:1
  • 2White G B,Fisch E A,Pooch U W.Cooperating Security Managers: A Peer Based Intrusion Detection System[].IEEE Network.1996 被引量:1
  • 3Dasgupta D,Gonzalez F.An immunity-based technique to characterize intrusions in computer networks[].IEEE Transactions on Evolutionary Computation.2002 被引量:1
  • 4Y Guan,,AA Ghorbani,,N Belacel.Y-means:a clustering method for intrusion detection[].Proceedings of Canadian Conference on Electrical and Computer Engineering.2003 被引量:1
  • 5Portnoy,L,Eskin,E,Stolfo,S J. Intrusion Detection with Unlabeled Data Using Clustering[C]//Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001) . 2001 被引量:1
  • 6Bandyopadhyay S,Maulik U.Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification[].Pattern Recognition.2002 被引量:1
  • 7Caberera J,Ravichandran B,Mehra R K.Statistical Model- ing for Network Intrusion Detection [ DB/OL]. http://IEEExplore. IEEE. org/xplore/login. gsp? url=/iel5/7034/18941/00876573.pdf? tp=&arnumber= 876573&isnumber=18941 . 2006 被引量:1
  • 8Cho Sung-bae.Incorporating Soft Computing Techniques into AProbabilistic intrusion Detection System[].IEEEtrans- actions on System Manand Cybernetics ( Part C).2004 被引量:1
  • 9Information and Computer Science University of California.Irvine KDD CUP99 Data Set[].ht- tp://kddicsuciedu/databases/kddcup/kddcupht- ml.2006 被引量:1
  • 10Kruegel C,Vigna G,William Robertson.A Multi-model Approachto the Detection of Web-Based Attacks[].Com- puter Networks.2005 被引量:1

共引文献2

同被引文献23

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部