期刊文献+

一种新的基于局部特征的图像质量评价方法 被引量:10

A Novel Image Quality Assessment Method Base on Local Character
原文传递
导出
摘要 传统的基于结构相似度(SSIM)的质量评价方法具有适用范围狭窄,评价算法不稳定等特点。在对传统图像质量评价算法研究的基础上,提出了一种新的基于局部特征的质量评价方法。与传统方法不同,在对图像质量进行评价时,该方法充分考虑到图像的结构信息对于图像质量的影响。新的方法主要分为3个步骤:首先,基于一种新的图像分块算法,根据图像的结构信息将图像划分成不同的块;其次,利用图像的梯度作为衡量像素重要程度的权值,计算参考图像和失真图像对应图像块的结构相似度;最后,融合各个块的相似度信息获得最终的图像质量评价结果。实验结果表明,该方法的评价结果更加合理、稳定,适用范围广,优于传统的基于结构相似度的质量评价方法。 Image quality is mainly affected by its structure and content. Traditional image quality evaluation metrics based on structural similarity put emphasis on image structure, but inadequately consider local features of image. So their application fields are limited and performances are unstable. If dividing an image into more meaningful structural blocks, the impaction of local features on image quality can be represented adequately and metric performance can be improved greatly. Based on these considerations, this paper proposes a new quality index using local character. It is implemented by three steps. Firstly, the image is divided into separate meaningful blocks according to a new image division algorithm. Different blocks represent different structures of the image. Secondly, the gradient of the image is used to weigh the influence of different pixels, and then the structural similarities of corresponding blocks between the reference image and distorted image are calculated. Finally, the ultimate image quality is calculated by combining structural similarities of all blocks according to their weights. The experiments show that the proposed metric is more reasonable and stable than traditional methods, and could be used in more application fields.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第8期1236-1243,共8页 Journal of Image and Graphics
基金 江苏省自然科学基金项目(BK2007588)
关键词 图像分块 结构相似度 图像质量评价 image division, structural similarity, image quality assessment
  • 相关文献

参考文献11

  • 1佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机辅助设计与图形学学报,2006,18(5):735-741. 被引量:47
  • 2Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms [ J ]. IEEE Transactions on Image Processing, 2006, 15 ( 11 ) : 3441- 3452. 被引量:1
  • 3Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing, 2004, 13 (4) : 600-612. 被引量:1
  • 4杨春玲,旷开智,陈冠豪,谢胜利.基于梯度的结构相似度的图像质量评价方法[J].华南理工大学学报(自然科学版),2006,34(9):22-25. 被引量:43
  • 5Santiago A F, Raul S J E, Carlos A L, et al. Image quality assessment based on loeal variance [ C ]//Proceeding of the 28th IEEE EMBS Annual International Conference. New York : IEEE, 2006 : 4815-4818. 被引量:1
  • 6Brooks Alan C, Pappas Thrasyvoulos N. Using structural similarity quality metrics to evaluate image compression techniques [ C ]//Proceedings of 32nd IEEE International Conferance on Acoustics, Speech, and Signal Processing (ICASSP). New York: IEEE, 2007 : 873-876. 被引量:1
  • 7王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 8王正友,肖文.基于掩盖效应的无参考数字图像质量评价[J].计算机应用,2006,26(12):2838-2840. 被引量:13
  • 9Parvez Sazzad Z M, Kawayoke Y, Horita Y. No reference image quality assessment for JPEG2000 based on spatial features[J]. Signal Processing: Image Communication. Elserier, 2008, 23: 257-268. 被引量:1
  • 10Li Junli, Chen Gang, Chi Zheru, et al. Image coding quality assessment using fuzzy integrals with a three-component image model[ J]. IEEE Transactions on Fuzzy Systems, 2004, 12 ( 1 ) : 99-106. 被引量:1

二级参考文献56

共引文献113

同被引文献145

引证文献10

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部