期刊文献+

结合深度图像和最佳分割阈值迭代的自遮挡检测算法 被引量:5

Self-occlusion detection algorithm combining depth image and optimal segmentation threshold iteration
下载PDF
导出
摘要 针对视觉任务中普遍存在的自遮挡现象和目前视觉系统尚无明确的自遮挡检测算法的现状,提出了一种结合视觉目标深度图像和最佳分割阈值迭代的自遮挡检测算法。在分析图像阈值分割技术的基础上,将分割阈值迭代法的思想引入深度图像领域,并结合使用视觉目标对应的深度差值图像信息,通过求取合适的阈值实现了对自遮挡现象的检测。实验结果表明,该方法能够有效地检测出视觉目标中存在的自遮挡现象并定位自遮挡边界,弥补了目前自遮挡检测领域研究的不足。 Aiming at the familiar serf-occlusion phenomenon in vision tasks and considering the actuality that there are no specific self-occlusion detecting algorithms, for vision systems, the paper proposes a self-occlusion detection algorithm combing depth image and optimal segmentation threshold iteration. At first, the segmentation threshold iteration method is applied to depth image by analyzing the threshold segmentation technology. Then, the self-occlusion detection is realized by obtaining a proper threshold and using the depth difference image information of the vision object. The experimental results show that the proposed algorithm can detect the serf-occlusion phenomenon and obtain the occlusion boundary effectively, so the deficiency in self-occlusion detection domain is compensated.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第7期754-757,共4页 Chinese High Technology Letters
基金 863计划(2006AA04Z212) 河北省自然科学基金(F2007000423 F2010001276)资助项目
关键词 深度图像 深度差值图像 阈值选择 迭代 自遮挡检测 depth image, depth difference image, threshold selection, iteration, self-occlusion detection
  • 相关文献

参考文献10

  • 1Ito K,Sakane S.Robust view-based visual tracking with detection of occlusions.In:Proceedings of the IEEE International Conferrence on Robotics and Automation,Seoul,Korea,2001.1207-1213. 被引量:1
  • 2Wu Y,Yu T,Hua G.Tracking appearances with occlusions.In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison,Wisconsin,USA,2003.789-795. 被引量:1
  • 3Tao H,Sawhney H,Kumar R.Object tracking with Bayesian estimation of dynamic layer representations.IEEE Transactions on Pattern Analysis And Machine Intelligence,2002,24(l):75-89. 被引量:1
  • 4Gentile C,Camps O.Segmentation for robust tracking in the presence of severe occlusion.IEEE Transactions on Image Processing,2004,13(2):166-178. 被引量:1
  • 5周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 6Bhasin S,Chaudhuri S.Depth from defocus in presence of partial self-occlusion.In:Proceedings of the 8th IEEE International Conference on Computer Vision,Vancouver,Canada,2001.488-493. 被引量:1
  • 7Park J C,Kim S M,Lee K H.3D mesh construction from depth images with occlusion.In:Lecture Notes in Computer Science.Berlin:Springer Berlin/ Heidelberg,2006.770-778. 被引量:1
  • 8徐平,邵定宏,魏楹.最佳阀值分割和轮廓提取技术及其应用[J].计算机工程与设计,2009,30(2):437-439. 被引量:16
  • 9Rhee F C H,Shin Y S.A fast numerical method for finding the optimal threshold for image segmentation.In:Proceedings of the IEEE International Conference on Fuzzy Systems,St.Louis,MO,US,2003.984-989. 被引量:1
  • 10Batenburg K J,Sijbers J.Optimal threshold selection for tomogram segmentation by projection distance minimization.IEEE Transactions on Medical Imaging,2009,28(5):676-686. 被引量:1

二级参考文献17

共引文献26

同被引文献53

  • 1S J Lee, K R Park, J Kim.A SfM-based 3D face reconstruction method robust to self-occlusion by using a shape conversion matrix [J].Pattern Recognition, 2011, 44(7): 1470-1486. 被引量:1
  • 2C Schmaltz, B Rosenhahn, T Brox, et al..Region-based pose tracking with occlusions using 3D models [J].Machine Vision and Applications, 2012, 23(3): 557-577. 被引量:1
  • 3A Gupta, A Mittal, L S Davis.Constraint integration for efficient multiview pose estimation with self-occlusions [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 493-506. 被引量:1
  • 4L Szirmay-Kalos, T Umenhoffer, B Tóth, et al..Volumetric ambient occlusion for real-time rendering and games [J].IEEE Computer Graphics and Applications, 2010, 30(1): 70-79. 被引量:1
  • 5J J McAuley, T S Caetano.Fast matching of large point sets under occlusions [J].Pattern Recognition, 2012, 45(1): 563-569. 被引量:1
  • 6A Stein, M Hebert.Occlusion boundaries from motion: low-level detection and mid-level reasoning [J].International Journal of Computer Vision, 2009, 82(3): 325-357. 被引量:1
  • 7D Hoiem, A Efros, M Hebert.Recovering occlusion boundaries from an image [J].International Journal of Computer Vision, 2011, 91(3): 328-346. 被引量:1
  • 8A Ayvaci, M Raptis, S Soatto.Sparse occlusion detection with optical flow [J].International Journal of Computer Vision, 2012, 97(3): 322-338. 被引量:1
  • 9Y Liu.Automatic range image registration in the Markov chain [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 12-29. 被引量:1
  • 10I Y Jang, J H Cho, K H Lee.3D human modeling from a single depth image dealing with self-occlusion [J].Multimedia Tools and Applications, 2012, 58(1): 267-288. 被引量:1

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部