期刊文献+

周期激励下Hartley模型的簇发及分岔机制 被引量:7

BURSTING PHENOMENA AS WELL AS THE BIFURCATION MECHANISM IN PERIODICALLY EXCITED HARTLEY MODEL
下载PDF
导出
摘要 通过在Hartley电路模型中引入周期变化的电流源,选取适当的参数,使得周期激励的频率与系统的固有频率之间存在量级上的差距,从而建立了具有快慢效应的非线性电路.引入广义自治系统的概念,分析了其相应的平衡点及各种分岔行为,给出了不同参数下广义自治系统存在fold分岔以及同时存在fold分岔与Hopf分岔下的两种不同的簇发现象,即fold/fold簇发现象和fold/subHopf/supHopf簇发现象.利用广义自治系统的分岔分析方法和转换相图,揭示了不同簇发现象的产生机制. By introducing periodically alternated current source as well as suitable values for the parameters to ensure that there exists order gap between the natural frequency and the exited frequency,nonlinear electric circuit with fast-slow effect has been established.Based on the conception of generalized autonomous system and the analysis of the properties of equilibrium points,all possible bifurcation forms have been discussed. Different types of bursting phenomena,such as fold/fold burster,fold/subHopf/supHopf burster,in which the fold or Hopf bifurcations may connect the quiescent states and the spiking states,have been presented.The mechanism of the bursters is explored via bifurcation analysis,which has been illustrated by transformed phase portraits of the generalized autonomous system.
机构地区 江苏大学理学院
出处 《力学学报》 EI CSCD 北大核心 2010年第4期765-773,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10872080 20976075) 江苏大学高级人才启动基金(10JDG062)资助项目~~
关键词 周期激励Hartley模型 广义自治系统 转换相图 簇发现象 periodically excited Hartley model generalized autonomous system transformed phase portraits bursting phenomenon
  • 相关文献

参考文献18

  • 1Chua LO, Lin GN. Canonical realization of Chua's circuit family. IEEE Trans Girc Syst, 1990, 37:885-902. 被引量:1
  • 2Albuquerque HA, Rubinger RM, Rech PC. Theoretical and experimental time series analysis of an inductorless Chua's circuit. Physica D: Nonlinear Phenomena, 2007, 233: 66- 72. 被引量:1
  • 3Korneta W, Gomes I, Mirasso C, et al. Experimental study of stochastic resonance in a Chua's circuit operating in a chaotic regime. Physica D, 2006, 219:93-100. 被引量:1
  • 4Chua LO, Wu CW, Huang A, et al. A universal circuit for studying and generating chaos. IEEE Trans Circ Syst, 1993 40:732-745. 被引量:1
  • 5Stouboulos IN, Miliou AN, Valaristos AP, et al. Crisis induced intermitteney in a fourth-order autonomous electric circuit. Chaos, Solitons & Fractals, 2007, 33:1256-1262. 被引量:1
  • 6Korneta W, Gomes I, Mirasso CR, et al. Experimental study of stochastic resonance in a Chua's circuit operating in a chaotic regime. Physica D, 2006, 219:93-100. 被引量:1
  • 7Tang F, Wang L. An adaptive active control for the modified Chua's circuit. Phys Lett A, 2005, 346:342-346. 被引量:1
  • 8Chen ZY, Zhang XF, Bi QS. Bifurcations and chaos of coupled electrical circuits. Nonlinear Analysis: Real World Applications, 2008, 9:1158-1168. 被引量:1
  • 9Cincotti S, Stefano SD. Complex dynamical behaviours in two non-linearly coupled Chua's circuits. Chaos, Solitons & Fractals, 2004, 21:633-641. 被引量:1
  • 10Hartley TT. Mossayebi F. Matrix integrators for real-time simulation of singular systems. In: Proc of Amer Control Conf, Pittsburgh, USA, 1989. 419-423. 被引量:1

二级参考文献11

共引文献8

同被引文献47

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部