期刊文献+

基于遗传算法的K-means初始化EM算法及聚类应用 被引量:1

K-means Initialization EM Algorithm and Its Clustering Application Based on Genetic Algorithm
下载PDF
导出
摘要 混合高斯模型能够有效地拟合概率密度函数,常用的混合高斯概率密度模型参数估计方法是EM迭代算法,这种算法的缺点是估计精度过分依赖于初始值,而且不能估计模型阶数。基于遗传算法的K-means初始化EM算法可以同时估计模型阶数和参数。试验结果表明,该算法具有更好的聚类效果。 The probability density function can be efficiently fitted by Gaussian mixture model.EM iteration algorithm is one of popular algorithms for parameters estimation of Gaussian mixture probability density model.However,this method de-pends on initial parameters highly and can not estimate the orders of models.K-means initialization EM algorithm based on the genetic algorithms can estimate the orders and parameters of models.The simulation results indicate that this method has a good clustering ability.
出处 《现代电子技术》 2010年第15期102-103,106,共3页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60971130)
关键词 混合高斯模型 遗传算法 K-MEANS 聚类应用 Gaussian mixture model genetic algorithm K-means clustering application
  • 相关文献

参考文献11

二级参考文献51

  • 1苏守宝,刘仁金.基于佳点集遗传算法的聚类技术[J].计算机应用,2005,25(3):643-645. 被引量:7
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:192
  • 3MacQueen J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967. 被引量:1
  • 4Wang Wei.Yang Jiong,Muntz R.STING:a statistical information grid approach to spatial data mining[C]//Proc of the 23rd International Conference on Very Large Data Bases,1997. 被引量:1
  • 5Pakhiraa M K,Bandyopadhyayb S I,JjwalMaulikc U.Validity index for crisp and fuzzy clusters[J].Pattern Rccognition,2004,37:487-501. 被引量:1
  • 6Agrawal R,Gehrke J,Gunopulcs D.Automatic subspaee clustering of high dimensional data for data mining application[C]//Proc of ACM SIGMOD Intconfon Management on Data,Seattle,WA,1998:94-205. 被引量:1
  • 7Bandyopadhyay S I,JjwalMaulik U.An evolutionary technique based on K-means algorithm for optimal clustering in RN[J].Information Sciences, 2002,146 : 221-237. 被引量:1
  • 8Guha S,Rastogi R,Shim K.Cure:an efficient clustering algorithm for large database[C]//Proc of ACM-SIGMOND Int Conf Management on Data,Seattle,Washington,1998:73-84. 被引量:1
  • 9Hall L O, Ozyurt I B,Bezdek J C.Clustering with a genetically optimized approach[J].IEEE Transactions on Evolutionary Computation, 1999,3(2) : 103-112. 被引量:1
  • 10Li J,Gao X B,Ji H B.A feature weighted FCM clustering algorithm based on evolutionary strategy[C]//Proeeedings of the 4th World Congress on Intelligent Control and Automation,Shanghai, China, 2003 : 1540-1553. 被引量:1

共引文献123

同被引文献5

  • 1KIRSTEINS P, QUAZ! A. Exact maximun likelihood time de- lay estimation for deterministic signals [C]// proceedings of EURASIP Conference. [S.1.]: Site Seer, 1988: 531-534. 被引量:1
  • 2DEMPSTER A P, LAIRD N, RUBIN D B. Maximun likeli- hood from incomplete data via the EM algorithm [J]. IEEE Trans. on Vehicular Technology, 1977, 23(3): 1-23. 被引量:1
  • 3FEEDER M, WEINSTEIN E. Parameter estimation of superim- posed signals using the EM algorithm [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(4): 477-489. 被引量:1
  • 4COLEMAN T F, LI Yu-ying. An interior trust region approach for nonlinear minimization subject to bounds [J]. SIAM OP- TIM, 2006, 6(2): 418-445. 被引量:1
  • 5SORENSEN D C. Newton's method with a model trust region modification [J]. SIAM J. Numer. Anal., 2006, 19(2): 409- 426. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部