期刊文献+

基于不确定非线性微分对策的保代价策略设计

Design of Guaranteed Cost Strategies Based on Uncertain Nonlinear Differential Games
下载PDF
导出
摘要 基于不确定非线性微分对策的保代价策略问题,提出了一种模糊设计方法。首先,基于T-S模糊模型方法,将非线性问题模糊线性化;然后,将非线性的问题当成模糊线性化的问题,得出了不确定非线性微分对策的模糊保代价策略存在的充分条件;最后,将模糊保代价策略的存在性等价于LMI的可解性,并通过仿真表明所提方法效果较好,方便了模糊保代价策略的求解。 A method of fuzzy design was proposed for the problem of guaranteed cost strategies based on uncertain,nonlinear differential games.First,based on T-S fuzzy model method,fuzzy linearization was completed for the non-linear problem.Then,the non-linear problem was considered as a fuzzy linear problem,and sufficient conditions for the existence of the fuzzy guaranteed cost strategies for uncertain nonlinear differential games were presented.Finally,the existence of the fuzzy guaranteed cost strategies was equivalent to a feasible solution of LMI.Simulation results showed that the method has a nice effect,which is helpful for obtaining guaranteed cost strategies.
出处 《电光与控制》 北大核心 2010年第8期65-67,82,共4页 Electronics Optics & Control
关键词 微分对策 保代价策略 非线性 不确定 differential game guaranteed cost strategy nonlinearity uncertainty
  • 相关文献

参考文献12

  • 1ISSACS R.Differential games[M].New York:John Wiley and Sons,1965. 被引量:1
  • 2经彤,张力平,佟明安.组队微分对策的研究及其在多机空战中的应用[J].电光与控制,1993(1):6-14. 被引量:2
  • 3邵剑,陈彭年,郭运德.一类定量微分对策最优性的充分条件[J].电光与控制,1999,6(2):59-63. 被引量:1
  • 4李登峰.微分对策[M].北京:国防工业出版社,2001.5-180. 被引量:5
  • 5王德进编著..H2和H8优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001:238.
  • 6AMATO F,MATTEI M,PIRONTI A.Robust strategies for Nash linear quadratic games under uncertain dynamics[C] //Proceedings of the 37th IEEE Conference of Decision and Control,1998:1869-1870. 被引量:1
  • 7AMATO F,MATTEI M,PIRONTI A.Guaranteeing cost strategies for linear quadratic differential games under uncertain dynamics[J].Automatica,2002,38(3):507-515. 被引量:1
  • 8NIAN Xiaohong,YANG Shengyue,CHEN Ning.Guaranteed cost strategies of uncertain LQ closed-loop differential games with multiple players[C] //Proceedings of the American Control Conference,2006:1724-1729. 被引量:1
  • 9LI Yu,JIAN Chu.An LMI approach to guaranteed cost control of linear uncertain time delay system[J].Automatica,1999,35(6):1155-1159. 被引量:1
  • 10KOGAN M M.Robust H∞suboptimal and guaranteed cost state feedbacks as solutions to linear-quadratic dynamic games under uncertainty[J].International Journal of Control,2000,73(3):219-224. 被引量:1

二级参考文献18

  • 1张学铭 邵剑.关于微分包含最优性问题的充分条件[J].控制理论与应用,1984,1(4). 被引量:1
  • 2邵剑.几类最优性问题的充分条件及应用[J].高校应用数学学报,1987,2(3). 被引量:1
  • 3Choi H H,Chung M J. Memoryless stabilization of uncertain dynamic systems with time-varying delayed states and controls[J]. Automatica, 1995, 31(9): 1349~1359. 被引量:1
  • 4Jeung E J,Oh D C,Kim J H,Park H B. Robust controller design for uncertain systems with time delays:LMI approach[J]. Automatica, 1996, 32(8): 1229~1231. 被引量:1
  • 5Lehnan B,Bentsman B,Lunel S V,Verriest E I. Vibrational control of nonlinear time lag systems with bounded delay:averaging theory, stability, and transient behavior[J]. IEEE Trans.Automat.Contr.,1994,39(May):898~912. 被引量:1
  • 6Niculescu S I,Verrist E I,Dugard L,Dion J D. Stability and robust stability of time-delay systems[A]. Dugard L,Verrist E I.A guided tour: in stability and control of time delay systems[C]. London:Springer-Verlay,1997,228:1~71. 被引量:1
  • 7Tanaka K,Ikeda T,Wang H O. Robust stabilization of a class of uncertain nonlinear system via Fuzzy control:quadratic stabilizability,H∞ control theory,and linear matrix inequalities[J]. IEEE Trans on Fuzzy systems,1996,4(1): 1~13. 被引量:1
  • 8Tanaka K, Ikeda T, Wang H O. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[J]. IEEE Tranctions on Fuzzy systems,1998, 6(2): 250~265. 被引量:1
  • 9Xie, Li. Output feedback H∞ control of systems with parameter uncertainty[J]. Int. J. Control,1996,63:741~750. 被引量:1
  • 10Lee K R,Kim J H,Jeung E T,Park H B.Output feedback robust H∞ control of uncertain fuzzy dynamic systems with time-varying delay. IEEE Transaction on Fuzzy Systems,2000,8(6):657~663. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部