摘要
为降低回收物流成本,提出了合理控制回收物流系统生产库存的方法。考虑到回收中心和处理工厂对废旧产品的供应与需求关系,建立了关于回收中心和处理工厂的二级生产库存优化模型。利用该模型可以得到回收中心在一个运作周期中的运输批次、每次运输量与首次运输量的最优比值和回收物流系统单位时间与生产库存有关的平均费用。由此,可以确定回收中心和处理工厂所需的最小仓储空间,以及它们在一个运作周期内的平均库存量和相应库存费用。为便于模型应用,探讨了最佳运输次数的上界确定方法,给出了模型的分解—比较算法。通过算例,验证了模型及其算法的有效性。
To reduce the cost of returned logistics, an appropriate approach for production inventory control in returned logistics system was proposed. By considering the relationship of used product supply from a collection center and the demand for a processing factory, a bi-echelon production inventory optimization model for the collection center and the processing factory integrated system was constructed. With the help of the model, the following items could be acquired, such as the center's transportation batches within an operation period, the optimal transportation quantity ratioes for each of the rest batches to the first batch and the average expense per unit time related to the production inventories in the system. Based on these, the center's and the factory's minimal storage spaces for used products, average production inventory quantities and corresponding inventory holding costs within an operation period could be computed respectively. In order to facilitate the application of the model, the method to determine upper bound of the optimal transportation batches was discussed, the Decomposition-Comparison (D-C) means to acquire the final solutions was presented. Finally, effectiveness of the model and the D-C means was verified by an example.
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2010年第7期1539-1544,共6页
Computer Integrated Manufacturing Systems
基金
河南省教育厅自然科学研究计划资助项目(2009B560006)~~
关键词
回收物流
库存控制
回收中心
处理工厂
优化模型
非线性规划
returned logistics
inventory control
collection center
processing factory
optimization model
non-linear programming