期刊文献+

高阶KdV方程的复化解结构 被引量:1

The Meromorphic Solutions of the Complex Higher order KdV Equation
原文传递
导出
摘要 通过行波变换将高阶KdV方程转换成复域中的常微分方程,以Nevanlinna值分布理论的有关知识为基础,研究了复化的高阶KdV方程w^((4))+w″+1/2w^2-cw-b=0(其中c,b为复常数)的亚纯解结构,确定了可能的三种形式的亚纯解.对于两类高阶方程(_nKdV)_1和(_mKdV)_2,当n=2,3和m=3时,不能确定相应的复化方程有类似亚纯解结构;当m=2时,相应复化方程具有具体形式的亚纯解. Using the travelling wave transformation in the paper,transform the higher order KdV equation to the ordinary differential equation in the complex field.Based on the knowledge of Nevanlinna valued-distribution theory,investigate the forms of meromorphic solutions of the complex higher order KdV equationω^((4)) +ω″+(1/2)ω^2-cω-b = 0,where c,b are complex constants,and obtain that there are no other meromorphic solutions besides those three class explicit solutions found in this paper.For two class higher order(nKdV)1 and(mKdV)2,it is not determinant that there are the similar solutions of the corresponding ordinary differential equation in the complex plane if n = 2,3 and m = 3.For(2KdV)2, there are possible four class explicit meromorphic solutions.
出处 《应用数学学报》 CSCD 北大核心 2010年第4期681-689,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10771220) 国家教育部博士点基金(200810780002)资助项目
关键词 KDV方程 亚纯函数 椭圆函数 NEVANLINNA理论 KdV equation meromorphic function elliptic function Nevanlinna theory
  • 相关文献

参考文献11

  • 1Chen D Y. Theory of Soliton. Beijing: Science Press, 2006. 被引量:1
  • 2Guo B L, Pang X F. Soliton. Beijing: Science Press, 1987. 被引量:1
  • 3Driscoll C F, O'Neil T M. Explanation of Instabilities Observed on an Fermi-Pasta-UIam Lattice. Phys. Rev. Lett., 1976, 37:69 72. 被引量:1
  • 4Kodama Y, Taniuti T. Higher Order Approximation in the Reductive Perturbation Method. Phys. Soc. Jpn., 1978, 45(1): 298 310. 被引量:1
  • 5Yang L. Value-distribution Theory and its New Research. Beijing: Science Press, 1982. 被引量:1
  • 6Eremenko A. Meromorphic Travelling Wave Solutions of the Kuramoto-Sivashinsky Equation. Math. Phys. Anal. Geom., 2005, 2:278-286. 被引量:1
  • 7Eremenko A. Meromorphic Solutions of Equations of Briot-Bouquet Type. Teor. Funktsii, Funk. Anal.i Prilozh., 1982, 38:48 56; English translation: Amer. Math. Soc. Transl., 1986, 133(2): 15-23. 被引量:1
  • 8Eremenko A, Liao L W, Ng T W. Meromorphic Solutions of Higher Order Briot-Bouquet Differential Equations. Math. Proe. Cambridge Philos. Soe., 2008, 146(1): 197-206. 被引量:1
  • 9Laine I. Nevanlinna Theroy and Complex Differential Equations. Berlin, New York: de Gruyter, 1993. 被引量:1
  • 10He Y Z, Xiao X Z. Algebriod Functions and Ordinary Differential Equations. Beijing: Science Press, 1988. 被引量:1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部