摘要
在Π(L_0)∩R≠φ的条件下,本文讨论了具有中间亏指数的对称微分算式l(y)的自共轭域,其中Π(L_0)是由l(y)生成的最小算子L_0的正则型域.使用方程l(y)=λ_(0y),(λ_0∈Π(L_0)∩R)的实参数L^2-解,我们对最大算子域D_M进行新的分解,由此得到l(y)的自共轭域新的完全解析刻画,其中自共轭边界条件中矩阵M,N的确定与l(y)=λ_(0y)在无穷远点的性质无关,仅与其在t=0点初始值的选择有关.由于自共轭算子谱是实的,使用实参数λ_0不仅有利于我们找到方程的显解,更重要的是可以得到谱的有关信息.
This paper deals with the self-adjoint domains of a singular symmetric differential expression l(y) with middle deficiency indices,under the condition that∏(L0)∩R≠φ, where∏(L0) is the regularity domain of the corresponding minimal operator L0.Using the real parameter L^2-solutions of the equation l(y) =λ0y withλ0∈∏(L0)∩R,we obtain a complete analytic description of the self-adjoint domains of l(y) by giving a new decomposition of the maximal operator domain DM.And the description is independent of the properties of l(y) at infinity(the determine of matrices M and N only depends the initial value of the solutions of l(y) =λ0y).Because the spectrum of self-adjoint operators is real, the advantage of using real parameterλ0 is not only because it is,in general,easier to find explicit solutions but,more importantly,it yields information about the spectrum.
出处
《应用数学学报》
CSCD
北大核心
2010年第4期632-639,共8页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10861008
10901119)
教育部高等学校博士学科点专项科研基金(20040126008)
天津科技大学引进人才科研启动基金(20060433)
关键词
微分算子
自共轭扩张
正则型域
实参数解
中间亏指数
differential operator
self-adjoint extensions
regularity domain
real parameter solutions
middle deficiency indices