摘要
The effects of ion screening in stellar core collapses are investigated based on a new progenitor star model. Simulation results show that ion screening slightly affects the leptons and decreases explosion energy, which is a negative factor for energy transfer supernova explosions. We also investigate the effect on type Ⅱ-supernova explosions of neutrino-nucleus elastic scattering based on the new progenitor star model. It is shown that, compared with the previously calculated results, neutrinos-nucleus elastic scattering in stellar core collapses is more severe, leading to an obvious reduction of the neutrino leakage energy loss and an increase of supernova explosion energy.
The effects of ion screening in stellar core collapses are investigated based on a new progenitor star model. Simulation results show that ion screening slightly affects the leptons and decreases explosion energy, which is a negative factor for energy transfer supernova explosions. We also investigate the effect on type Ⅱ-supernova explosions of neutrino-nucleus elastic scattering based on the new progenitor star model. It is shown that, compared with the previously calculated results, neutrinos-nucleus elastic scattering in stellar core collapses is more severe, leading to an obvious reduction of the neutrino leakage energy loss and an increase of supernova explosion energy.