期刊文献+

FCM-HMM-SVM混合故障诊断模型及其在电力电子电路故障诊断中的应用 被引量:2

FCM-HMM-SVM based mixed diagnostic model and its application in the power electronic circuit
下载PDF
导出
摘要 提出一种基于模糊C均值聚类(FCM)、隐马尔可夫模型(HMM)和支持向量机(SVM)相结合的电力电子故障诊断方法.采用FCM方法对故障信号进行模糊聚类,提取故障特征;根据隐马尔可夫模型进行动态过程建模;根据支持向量机进行模式分类;基于HMM-SVM混合的故障诊断模型实现了对机车变流器电路中晶闸管断路故障的诊断.实验结果分析表明,该方法能准确地对电力电子电路进行诊断和故障元定位,诊断精度高,具有很好的实用价值. Based on Fuzzy C-mean clustering(FCM),Hidden Markov Model(HMM) and Support Vector Machine(SVM),a mixed diagnostic model is presented for power electronic circuit faults diagnosis in this paper.FCM is applied to fuzzy cluster for fault signals and to extract the fault features,HMM is applied to deal with continuous dynamic signals and to calculate the matching degree,and SVM is applied to classify fault models and to diagnose faults.The power electronic circuit faults diagnosis in locomotive convertors is implemented with the FCM-HMM-SVM based mixed diagnostic model.Experimental results show that the proposed method can detect and locate faults with high precision.
出处 《电力科学与技术学报》 CAS 2010年第2期61-67,共7页 Journal of Electric Power Science And Technology
基金 福建省自然科学基金(A0710003) 福建省教育厅科学基金(JB06045)
关键词 故障诊断 电力电子电路 模糊C均值 隐马尔可夫模型 支持向量机 fault diagnosis power electronic circuit fuzzy C-mean clustering discrete hidden markov model support vector machine
  • 相关文献

参考文献15

二级参考文献56

共引文献101

同被引文献23

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2崔江,王友仁,刘权.基于高阶谱与支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2007,27(10):62-66. 被引量:40
  • 3Liu H* Chen C, Tian H Q, et al. A hybrid model forwind speed prediction using empirical mode decomposi-tion and artificial neural networks [J]. Renewable Ener-gy, 2012,48: 545-556. 被引量:1
  • 4Huang N E,Shen Z, Long S R. The empirical modede-composition and the Hilbert spectrum for nonlinearandnon-stationary time series analysis[J].Proceedings ofTheRoyal Society Soc Lond, 1998,454:903-995. 被引量:1
  • 5Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,2000. 被引量:1
  • 6Boban I,Kilchenmann P.A modern tests facility for large power electronics components[J].ABB Review,1993,7(6):29-35. 被引量:1
  • 7Tso SK,Liang Jun,Zhou Xiaoxin.Coordination of TCSC and SVC for improvement of power system performance with NN-based parameter adaption[J].Electrical Power&Energy Systems,1999,21(14):235- 244. 被引量:1
  • 8Frank P M.Analytical and qualitative model based fault Diagnosis-A surveyandsome new results[J].European J.Control,1998,5(2):6-28. 被引量:1
  • 9YVV.S.MurtyGK.Duby.R.M.K.sinha.fault Diagnosisin Three-phase Thyristor Converters Using microprocessor[J].IEEE Trans on Industrial App- lication,1984,20(6):1490-1497. 被引量:1
  • 10Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32. 被引量:1

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部