期刊文献+

The Existence and Uniqueness of Periodic Solutions for a Kind of Lienard Equation with a Deviating Argument 被引量:2

The Existence and Uniqueness of Periodic Solutions for a Kind of Lienard Equation with a Deviating Argument
下载PDF
导出
摘要 By means of Mawhin's continuation theorem,we study a kind of lie'nard functional differential equations:x"(t)+f(x(t))x'(t)+g(t,x(t-τ(t))) = e(t).Some new results on the existence and uniqueness of periodic solutions are obtained. By means of Mawhin's continuation theorem,we study a kind of lie'nard functional differential equations:x"(t)+f(x(t))x'(t)+g(t,x(t-τ(t))) = e(t).Some new results on the existence and uniqueness of periodic solutions are obtained.
作者 WANG Na
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期74-80,共7页 数学季刊(英文版)
基金 Foundation item: Supported by the Anhui Natural Science Foundation(050460103) Supported by the NSF of Anhui Educational Bureau(KJ2008B247) Supported by the RSPYT of Anhui Educational Bu- reau(2008jq1111)
关键词 periodic solution deviating argument lie’nard equations continuation theorem periodic solution deviating argument lienard equations continuation theorem
  • 相关文献

参考文献6

  • 1ZHEN Zu-xiu.Theory of Functional Differential Equations[M].Hefei:Anhui Eduction Press,1994. 被引量:1
  • 2LIU Xi-ping,JIA Mei,REN Rui.On the existence and uniqueness of periodic solutions to a type of duffing equation with complex deviating argument[J].Mathematica Scientia Acta,2007,27A(1):037-044. 被引量:1
  • 3KUANG Yang.Delay Differential Equations with Applications in Population Dynamical System[M].New York:Academic Press,1993. 被引量:1
  • 4刘炳文,黄立宏.一类一阶中立型泛函微分方程周期解的存在与唯一性[J].数学学报(中文版),2006,49(6):1347-1354. 被引量:10
  • 5GAINES R E,MAWHIN J.Coincidence Degree and Nonlinear Equations[M].Berlin:Springer-Verlag,1977. 被引量:1
  • 6LU Shi-ping,GE Wei-gao.Periodic solutions for a kind of liénard equation with a deviating argument[J].J Math Anal Appl,2005,25(2):216-227. 被引量:1

二级参考文献12

  • 1Komanovskli V. B., Nosov V. R., Stability of functional differential equations, London: Academic.Press, 1986. 被引量:1
  • 2Yang K., Delay differential equations with applications in population dynamical system, New York: Academic Press, 1993. 被引量:1
  • 3Burton T. A., Stability and periodic solution of ordinary and functional differential equations, Orland: Academic Press, FL. 1985. 被引量:1
  • 4Gaines R. E., Mawhin J., Coincide degree and nonlinear differential equations, Lecture Notes in Math., 568,Spring-Verlag, 1977. 被引量:1
  • 5Hale J. K., Theory of functional differential equations, New York: Spring, 1977. 被引量:1
  • 6Hale J. K., Mawhin J., Coincide degree and periodic solutions of neutral equations, J. Differential Equations,1975, 15:295-307 . 被引量:1
  • 7Lu S.P., Ge W. G., On existence of periodic solutions for neutral differential equation, Nonlinear Analysis,2003, 54: 1285-1306. 被引量:1
  • 8Zhang M. B,., Periodic solutions of linear and quasilinear neutral functional differential equations, J. Math.Anal. Appl., 1995, 189: 378-392. 被引量:1
  • 9Liu B. W., Huang L. H., Periodic solutions for some delay differential equations appearing in a power system,Annales Polonici Mathematici, 2005, 86(2): 153-164. 被引量:1
  • 10Hardy G. H., Littlewood J. E. and Polya G., Inequalities, London: Cambridge Univ. Press, 1964. 被引量:1

共引文献9

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部