期刊文献+

The Upper Bound of the Moebius Scalar Curvature of Submanifolds in S^n+p

The Upper Bound of the Moebius Scalar Curvature of Submanifolds in S^n+p
下载PDF
导出
摘要 The most important Moebius invariants in the Moebius differential geometry of submanifolds in S^n+p are the Moebius metric g, the Moebius second fundamental form B, the Moebius form φ and the Blaschke tensor A. In this paper, we obtain the upper bound of the Moebius scalar curvature of submanifolds with parallel Moebius form in S^n+p.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期65-73,共9页 数学季刊(英文版)
基金 Supported by the NSF of China(10671087) Supported by the NSF of Jiangxi Province(2008GZS0024)
关键词 upper bound Moebius metric Moebius scalar curvature parallel Moebius form 上面的界限;Moebius 度量标准;Moebius 分级的弯曲;平行 Moebius 形式;
  • 相关文献

参考文献3

二级参考文献6

  • 1Changping Wang.Moebius geometry of submanifolds in ? n[J].manuscripta mathematica.1998(4) 被引量:1
  • 2Li An-Min,Li Jimin.An intrinsic rigidity theorem for minimal submanifolds in a sphere[J].Archiv der Mathematik.1992(6) 被引量:1
  • 3Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1981(2) 被引量:1
  • 4Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1980(1) 被引量:1
  • 5Thomas E. Cecil,Patrick J. Ryan.Focal sets, taut embeddings and the cyclides of Dupin[J].Mathematische Annalen.1978(2) 被引量:1
  • 6Hai Zhong LI Department of Mathematics, Tsinghua University. Beijing 100084. P. R. China Hui Li LIU Department of Mathematics, Northeastern University. Shenyang 110000. P. R. China Chang Ping WANG Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences. Peking University, Beijing 100871, P. R. China Guo Song ZHAO Department of Mathematics, Sichuan University, Chengdu 610064. P. R. China.Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures[J].Acta Mathematica Sinica,English Series,2002,18(3):437-446. 被引量:55

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部