摘要
在2-度量空间(X,d)上引进了具有相同条件的逆收缩型自映射族{T_(i,j)}_(i∈NU{0},j∈N),并证明了当X是完备且满足条件T_(α,μ)·T_(β,v)=T_(β,v)·T_(α,μ),(?)α,β∈N U{0},μ,v∈N且μ≠v时该映射族具有唯一的公共不动点.我们的定理推广和改进了很多2-度量空间上的唯一公共不动点定理.
We introduce the concept of self-maps with same quasi-contractive type condition in 2-matric space X and prove that the maps have a unique common fixed point when X is complete andsatisfies the following condition T_(α,μ)·T_(β,ν)=T_(β,ν)·T_(α,μ) for allα,β∈N∪{0},μ,ν∈N,μ≠ν.Our maintheorem improves and generalizes many known unique common fixed point theorems in 2-metric spaces.
出处
《南京大学学报(数学半年刊)》
CAS
2010年第1期82-87,共6页
Journal of Nanjing University(Mathematical Biquarterly)
基金
国家自然科学基金项目(10361005)
延边大学科研项目(2008-6).
关键词
2-度量空间
柯西序列
拟收缩条件
公共不动点
2-metric spaces
Cauchy sequence
quasi contractive condition
common fixed point