期刊文献+

次线性碰撞振子次调和弹性解的存在性和多解性问题(英文) 被引量:1

EXISTENCE AND MULTIPLICITY OF SUBHARMONIC BOUNCING SOLUTIONS FOR SUB-LINEAR IMPACT OSCILLATORS
下载PDF
导出
摘要 本文利用相平面分析方法结合Poincare-Birkhoff扭转不动点定理得到了次线性碰撞振子的无穷多次调和弹性解的存在性. In this paper,we use the phase-plane analysis combined with Poincare-Birkhoff fixed point theorem to obtain the existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators.
出处 《南京大学学报(数学半年刊)》 CAS 2010年第1期17-30,共14页 Journal of Nanjing University(Mathematical Biquarterly)
基金 Supported by the National Natural Science Foundation of China(10871142) the Post Doctor Foundation of Suzhou University(32107601).
关键词 碰撞振子 次线性 弹性周期解 相平面分析 impact oscillators sub-linear bouncing periodic solutions phase-plane analysis
  • 相关文献

参考文献1

二级参考文献25

  • 1[1]Lamba,H.,Chaotic,regular and unbounded behaviour in the elastic impact oscillator,Physica D,1995,82:117-135. 被引量:1
  • 2[2]Zharnitsky,V.,Invariant tori in Hamiltonian systems with impacts,Comm.Math.Phys.,2000,211:289-302. 被引量:1
  • 3[3]Boyland,P.,Dual billiards,twist maps and impact oscillators,Nonlinearity,1996,9:1411-1438. 被引量:1
  • 4[4]Corbera,M.,Llibre,J.,Periodic orbits of a collinear restricted three body problem,Celestial Mech.Dynam.Astronom.,2003,86:163-183. 被引量:1
  • 5[5]Kunze,M.,Non-smooth dynamical systems,in Lecture Notes in Math.,Vol.1744,New York:Springer-Verlag,2000. 被引量:1
  • 6[6]Qian,D.,Torres,P.J.,Bouncing solutions of an equation with attractive singularity,Proc.Roy.Soc.Edinburgh,2004,134A:210-213. 被引量:1
  • 7[7]Bonheure,D.,Fabry,C.,Periodic motions in impact oscillators with perfectly elastic bouncing,Nonlinearity,2002,15:1281-1298. 被引量:1
  • 8[8]Ortega,R.,Dynamics of a forced oscillator with obstacle,in Variational and Topological Methods in the Study of Nonlinear Phenomena (eds.Banci,V.,Cerami,G.,Degiovanni,M.et al.),Boston:Birkh(a)ser,2001,77-89. 被引量:1
  • 9[9]Qian,D.,Large amplitude periodic bouncing in impact oscillators with damping,Proc.Amer.Math.Soc.,2005,133:1797-1804. 被引量:1
  • 10[10]Qian,D.,Torres,P.J.,Periodic motions of linear impact oscillators via the successor map,SIAM J.Math.Anal.,2005,36:1707-1725. 被引量:1

共引文献4

同被引文献19

  • 1钱定边,孙西瀅.渐近线性碰撞振子的不变环面[J].中国科学(A辑),2006,36(4):418-437. 被引量:2
  • 2Lazer A, Mckenna P. Periodic bounding for a forced linear spring with obstacle. Differential Integral Equations, 1992,5: 165-172. 被引量:1
  • 3Qian D. Large amplitude periodic bouncing for impact oscillators with damping. Proc Amer Math Soc, 2005, 133:1797-1804. 被引量:1
  • 4Bonheune D, Fabry C. Periodic motions in impact oscillators with perfectly elastic bouncing. Nonlinearity, 2002, 15:1281-1298. 被引量:1
  • 5Qian D, Torres P. Bouncing solutions of an equation with attractive singularity. Proc Roy Soc Edinburgh Sect A,2004, 134: 201-213. 被引量:1
  • 6Herrera A, Torres P. Periodic solutions and chaotic dynamics in forced impact oscillators. SIAM J Appl Dyn Syst,2013, 12: 383-414. 被引量:1
  • 7Hale J. Ordinary differential equation. New York: Robert E Krieger Publishing Campany Huntingto, 1980. 被引量:1
  • 8Papini D, Zanolin F. Differential equations with indefinite weight: Boundary value problems and qualitative properties of the solutions. Rend Sem Mat Univ Pol Torino, 2002, 60: 265-295. 被引量:1
  • 9Papini D. Boundary value problems for second order differential equations with superlinear terms: A topological approach. PhD Thesis. Trrieste: Scuola Internazionale Superiore di Studi Avanzati, 2000. 被引量:1
  • 10Papini D, Zanoni F. A topological approach to superlinear indefinite boundary-value problem. Topol Methods Nonlinear Anal, 2000, 15: 203-233. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部