期刊文献+

基于PCNN和DSP的感兴趣区域提取系统研究与实现

Research and Implementation of Interested Region Extraction System Based on PCNN and DSP
下载PDF
导出
摘要 由于普通PC实现的感兴趣区域提取系统普遍存在耗时大、实时性差且处理精度不高等缺陷,在此利用瑞泰公司ICETEK-DM642-PCI评估板提供的TI公司的TMS320DM642芯片,DSP/BIOS的实时操作系统,CCS集成开发环境来构建应用程序。应用脉冲耦合神经网络对图像进行噪声抑制,然后进行二值分割。再利用PCNN正向自动波去除一些很小的干扰,反向自动波恢复感兴趣的区域并提取出。实验结果表明,采用的算法能够精确地提取出图像中感兴趣的区域。 Because the interested region extraction algorithm based on common PC has the defects such as time-comsumption, bad real-time and poor processing accuracy, the application program is built with TI's TMS320DM642 chip provided by ICETEK-DM642-PCI evaluation board of Rite-Hite Corporation and DSP/BIOS real-time operating system under the integrat- ed development environment of CCS, the noise suppression of image is performed by the pulse-coupled neural network, two- value segmentation is carried out, some small interference is removed by the foreward automatic wave of PCNN, the interested region is recovered by the backward automatic wave of PCNN, and then the interested region is extracted. Experimental re- sults show that the algorithm can be used to extract the interested region of images accurately.
出处 《现代电子技术》 2010年第14期144-147,154,共5页 Modern Electronics Technique
关键词 DM642 脉冲耦合神经网络 感兴趣区域提取 二值分割 DM642 pulse-coupled neural network extraction of interestrd region two-value segmentation
  • 相关文献

参考文献2

二级参考文献17

  • 1[1]Broussard R P, Rogers S K, Oxley M E, et al.. Physiologically motivated image fusion for object detection using a pulse coupled neural network[J]. IEEE Trans. on Neural Networks, 1999, 10(3):554-563. 被引量:1
  • 2[2]Liu X, Wang D L. Range image segmentation using a relaxation oscillator networks[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 564-573. 被引量:1
  • 3[3]Kinser J M. Foveation by a pulse-coupled neural network[J]. IEEE Trans. on Neural Networks,1999, 10(3): 621-625. 被引量:1
  • 4[4]Johnson J L, Padgett M L. PCNN Models and Applications[J]. IEEE Trans. on Neural Networks,1999, 10(3): 480-498. 被引量:1
  • 5[5]Jcaufield H, Kinser J M. Finding shortest path in the shortest time using PCNN's[J]. IEEE Trans.on Neural Networks, 1999, 10(3): 604-606. 被引量:1
  • 6[6]Ranganath H S, Kuntimad G. Object detection using pulse coupled neural networks[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 615-620. 被引量:1
  • 7[7]Wells D M. Solving degenerate optimization problems using networks of neural oscillators[J].Neural networks, 1992, 5(6): 949-959. 被引量:1
  • 8[8]Gu Xiaodong, Wang Haiming, Yu Daoheng. Binary image restoration using pulse coupled neural network. The 8th International Conference on Neural Information Processing, ICONIP-2001,Shanghai, China, 2001: 922-927. 被引量:1
  • 9[9]Johnson J L, Padgett J L, Friday W O. Multiscale image factorization. In Proc. IEEE Int. Conf.Neural Networks, Houston, TX, June 1997: 1465-1468. 被引量:1
  • 10[10]Eckhorn R, Reitboeck H J, Arndt M, et al.. Feature linking via synchronization among distributed assemblies, Simulation of results from cat cortex[J]. Neural Comput., 1990, 2(3): 293-307. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部