期刊文献+

On Non-normal Arc-Transitive 4-Valent Dihedrants 被引量:1

On Non-normal Arc-Transitive 4-Valent Dihedrants
原文传递
导出
摘要 Let X be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group Dn such that X is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within Dn. It is shown that X is isomorphic either to the lexicographic product Cn[2K1] with n 〉 4 even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively. Let X be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group Dn such that X is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within Dn. It is shown that X is isomorphic either to the lexicographic product Cn[2K1] with n 〉 4 even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively.
机构地区 FAMNIT PeF IMFM
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1485-1498,共14页 数学学报(英文版)
基金 Supported by "Agencija za raziskovalno dejavnost Republike Slovenije", Research Program P1-0285 Slovenian-Hungarian Intergovernmental Scientific Technological Cooperation Project (Grant No. SI-2/2007)
关键词 Cayley graph arc transitivity dihedral group Cayley graph, arc transitivity, dihedral group
  • 相关文献

参考文献1

二级参考文献20

  • 1Wang, C., Xu, M. Y.: Nonnormal 1-regular and 4-valent Cayley graphs of dihedral groups D2n, preprint 2003 被引量:1
  • 2Biggs, N. Algebraic graph theory, 2nd edition, Cambridge University Press, Cambridge, 1993 被引量:1
  • 3Wielandt, H., Finite permutation groups, Academic Press, New York, 1964 被引量:1
  • 4Alspach, B., Marusic, D., Nowitz, L.: Constructing graphs which are 1/2-transitive. J. Austral. Math. Soc.A, 56, 391-402 (1994) 被引量:1
  • 5Djokovic, D. Z. Miller, G. L.: Regular groups of automorphisms of cubic graphs. J. Combin. Theory, 29,195-230 (1980) 被引量:1
  • 6Frucht, R.: A one-regular graph of degree three. Canad. J. Math., 4, 240-247 (1952) 被引量:1
  • 7Marusic, D., Xu, M. Y.: A 1/2-transitive graph of valency 4 with a nonsolvable group of automorphisms. J.Graph Theory, 25, 133-138 (1997) 被引量:1
  • 8Miller, R. C.: The trivalent symmetric graphs of girth at most six. J. Combin. Theory, Set. B, 10, 163-182(1971) 被引量:1
  • 9Gardiner, A., Praeger, C. E.: On 4-valent symmetric graphs. Europ. J. Combin., 15, 375-381 (1994) 被引量:1
  • 10Gardiner, A., Praeger, C. E.: A characterization of certain families of 4-valent symmetric graphs. Europ.J. Combin., 15, 383-397 (1994) 被引量:1

共引文献4

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部