摘要
Let X be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group Dn such that X is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within Dn. It is shown that X is isomorphic either to the lexicographic product Cn[2K1] with n 〉 4 even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively.
Let X be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group Dn such that X is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within Dn. It is shown that X is isomorphic either to the lexicographic product Cn[2K1] with n 〉 4 even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively.
基金
Supported by "Agencija za raziskovalno dejavnost Republike Slovenije", Research Program P1-0285
Slovenian-Hungarian Intergovernmental Scientific
Technological Cooperation Project (Grant No. SI-2/2007)