摘要
通过构造连续算子,利用不动点定理证明了在一定条件下,变系数多项式型迭代方程解的存在性以及解的凹凸性.在利用不动点定理时,去掉了以往文章都要求多项式型迭代方程中的函数是保端点的这个限制,扩大了适用范围.
In this paper, under certain conditions, by constructing continuous operators and using the fixed point theorem, the existence and concavity of the solutions for polynomiallike iterative equations are proved. The restriction in previous papers that the function in the equation must be endpointkeeping is removed in this paper. So that the scope of application of the result is extended.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第4期474-478,共5页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅自然科学基金(07ZC045)资助项目
关键词
迭代方程
连续算子
不动点定理
凹凸性
iterative equation
continuous operators
fixed point theorem
concavity