摘要
设L=-△_(H^n)+V是Heisenberg群H^n上的Schr(o|¨)dinger算子,其中△_(H^n)为H^n上的次Laplacian,V≠0为满足逆H(o|¨)lder不等式的非负函数.本文研究H^n上Riesz位势I_α~L=L^(-α/2)在Campanato型空间A_L~β和Hardy型空间H_L^p上的某些性质.
Let =-Δ_(H^n)+V be the Schroedinger operator on the Heisenberg groups H^n,whereΔ_(H^n) is the sub-Laplacian on H^n and V 0 is a nonnegative function satisfying the reverse Hoelder inequality.In this article,the author investigates some properties of the Riesz potential Iα~ = (-α/2) on the Campanato-type spacesΛ_βand the Hardy-type spaces H_p on Hn.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2010年第4期785-794,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10861010)