期刊文献+

基于小生境粒子群技术的多航迹规划研究 被引量:6

Multiple Routes Planning for Air Vehicles Based on Niche Particle Swarm Optimization
下载PDF
导出
摘要 文章将飞行器多航迹规划转化为多峰值函数优化问题,并以此为基础提出基于小生境粒子群技术的多航迹规划方法。该方法采用特定的粒子编码方式和适当的适应度函数,在满足各种航迹约束的条件下,通过引入RCS(Restricted Competition Selection)小生境生成策略,将航迹规划空间内的粒子群形成不同的相互独立的小生境子种群。在进化过程中,所有粒子个体只在各自的小生境子种群内部进化,追逐不同的极值点。当进化结束时,每个小生境子种群将分别生成一条各自的最优航迹,从而为飞行器生成了多条不同的可选航迹。仿真结果表明了该方法的有效性。 Air vehicle routes planning can be seen as a multiple-peak function optimization problem. The existing genetic algorithm for this problem is complicated. We present a new and more simple algorithm for multiple routes planning of air vehicles which is based on niche particle swarm optimization. In this algorithm, specific particle swarm coding representation and suitable fitness function was used. It can process each kind of the mission con- straints. By introducing the Restricted Competition Selection (RCS) niche technique, the individuals of the population form a number of sub-populations. In the evolutionary process, all routes evolve only in their own sub-population. At the end of the evolution, each sub-population provides an optimal route, and thus the algorithm generates multiple routes for the vehicle. The simulation results demonstrated the feasibility of the algorithm.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第3期415-420,共6页 Journal of Northwestern Polytechnical University
关键词 飞行器 航迹规划 粒子群 小生境 air vehicle, route planning, particle swarm optimization, niche
  • 相关文献

参考文献9

  • 1Szczerba R J,Galkowski P,Glickstein I S,et al.Robust Algorithm for Real-Time Route Planning.IEEE Trans on Aerospace and Electronic system,2000,36(3):869-878. 被引量:1
  • 2白俊强,柳长安.基于蚁群算法的无人机航路规划[J].飞行力学,2005,23(2):35-38. 被引量:27
  • 3李思海,白存儒.基于遗传算法的飞行器航迹规划研究[J].华东交通大学学报,2007,24(4):147-151. 被引量:16
  • 4唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036. 被引量:53
  • 5Hocaoglu C,Sanderson A C.Planning Multiple Paths with Evolutionary Speciation.IEEE Trans on Evol Computer,2001,5(3):169-192. 被引量:1
  • 6Brits R,Engelbrcht A P.Solving Systems of Unconstrained Equations Using Particle Swarm Optimization.Proceedings of the IEEE International Conference on Systems,2002,100-105. 被引量:1
  • 7Lee C G,Cho D H,Jung H K.Niche Genetic Algorithm with Restricted Competition Selection for Multimodal Function Optimization.IEEE Trans on Magnetics,1999,35(3):1122-1125. 被引量:1
  • 8Eberhart R C,Shi Y H.Particle Swarm Optimization:Development Applications and Resources.Proceedings of the 2001 Congress on Evolutionary Computation,2001,81-86. 被引量:1
  • 9郑昌文..飞行器航迹规划方法研究[D].华中科技大学,2003:

二级参考文献15

  • 1严平,丁明跃,周成平,郑昌文.飞行器多任务在线实时航迹规划[J].航空学报,2004,25(5):485-489. 被引量:27
  • 2邱晓红,张林昌,高金源.战术飞行任务的水平航迹快速生成算法[J].北京航空航天大学学报,1996,22(6):775-779. 被引量:10
  • 3P. K. A. Menon, E.Kim, V. H. L. Cheng. Optimal Trajectory Synthesis for Terrain-Following Flight[J]. Journal of Guidance, Control, and Dynamics, 1991,14(4):807-813. 被引量:1
  • 4James Kennedy, Russell C. Eberhart. Particle Swarm Optimization[C]. Perth, Western Australia: IEEE International Conference on Neural Networks, 1995: 1942-1948. 被引量:1
  • 5Russell C. Eberhart, Yuhui Shi. Particle Swarm Optimization: Development, Applications and Resources[C]. Seoul, Korea: Proceedings of the 2001 Congress on Evolutionary Computation, 2001:81-86. 被引量:1
  • 6Ma Tao,Ben Abbott. Optimal Route Re-planning for Mobile Robots:A Massively Parallel Incremental A"Algorithm [A]. Proceedings of IEEE Conference on Robotics and Automation[C]. Albuquerque, New Mexico,1997.2 727-2 733. 被引量:1
  • 7Timothy W M,Randal W B. Trajectory Planning for Coordinated Rendevous of Unmanned Air Vehicles[R]. AIAA-2000-4339-CP, 2000. 被引量:1
  • 8Chandler P R, Rasmussen S. UAV Cooperative Path Planning[R]. AIAA-2000-4370-CP, 2000. 被引量:1
  • 9Parunak H Van Dyke,Michael Purcell ,Robert O Connell, Digital Pheromones for Autonomous Coordination of Swarming UAV's[R]. AIAA-2002-3446-CP, 2002. 被引量:1
  • 10彭斯俊,黄樟灿,刘道海,黄小为.基于蚂蚁系统的 TSP 问题的新算法[J].武汉汽车工业大学学报,1998,20(5):88-92. 被引量:15

共引文献84

同被引文献49

  • 1郑昌文,严平,丁明跃,苏康.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446. 被引量:94
  • 2唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036. 被引量:53
  • 3张蕾,杨波.并行粒子群优化算法的设计与实现[J].通信学报,2005,26(B01):289-292. 被引量:9
  • 4李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 5Suresh M,Ghose D.Role of information and communication in rede-fining unmanned aerial vehicle autonomous control levels[J].Journalof Aerospace Engineering,2010,224(2):171-197. 被引量:1
  • 6Pepy R,Kieffer M,Walter E.Reliable robust path planning withapplication to mobile robots[J].International Journal of AppliedMathematics and Computer Science,2009,19(3):413-424. 被引量:1
  • 7Alves N A,Macharet D G,Campos M F M.On the generation oftrajectories for multiple UAVs in environments with obstacles[J].Journal of Intelligent and Robotic Systems:Theory and Applica-tions,2010,57(1-4):123-141. 被引量:1
  • 8Duan H B,Yu Y A,Zhang X Y,et al.Three-dimension pathplanning for UCAV using hybrid meta-heuristic ACO-DE algo-rithm[J].Simulation Modeling Practice and Theory,2010,18(8):1104-1115. 被引量:1
  • 9Wang G S,Li Q,Guo L J.Multiple UAVs routes planningbased on particle swarm optimization algorithm[C]∥Proc.ofthe International Symposium on Information Engineering andElectronic Commerce,2010:150-154. 被引量:1
  • 10Sven K,Maxim L.Real time adaptive A*[C]∥Proc.of the 5thInternational Joint Conference on Autonomous Agents and Multia-gent Systems,2006:281-288. 被引量:1

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部