摘要
The magnetic, conductivity, and dielectric properties have been investigated in single-phase polycrystalline Y0.1Co1.9MnO4. The temperature-dependent magnetisation reveals the ferromagnetic transition in sample at a low temperature (~186 K). Magnetisation as a function of field H (M H loop) indicated the weak ferromagnetism of the sample at room temperature. The constant e and dielectric loss tg5 measurements represent a ferroelectric phase transition at a higher temperature (~650 K), while the conductivity shows an insulator-metallic transition. The ferro- electric hysterisis loops and capacitance voltage measurements confirm the ferroelectric nature of the sample at room temperature. The observed ferromagnetism and ferroelectric nature in this material suggests a potential multiferroic application.
The magnetic, conductivity, and dielectric properties have been investigated in single-phase polycrystalline Y0.1Co1.9MnO4. The temperature-dependent magnetisation reveals the ferromagnetic transition in sample at a low temperature (~186 K). Magnetisation as a function of field H (M H loop) indicated the weak ferromagnetism of the sample at room temperature. The constant e and dielectric loss tg5 measurements represent a ferroelectric phase transition at a higher temperature (~650 K), while the conductivity shows an insulator-metallic transition. The ferro- electric hysterisis loops and capacitance voltage measurements confirm the ferroelectric nature of the sample at room temperature. The observed ferromagnetism and ferroelectric nature in this material suggests a potential multiferroic application.
基金
supported by the Doctorial Start-up Fund of Guizhou University of China (Grant No. 2006/Z065020)