期刊文献+

基于随机退火的神经网络学习算法及其应用 被引量:2

Neural network learning algorithm based on random annealing and it's application
下载PDF
导出
摘要 提出了一种基于随机退火机制的竞争层神经网络学习算法,并将其应用于解决图像特征绑定问题。该算法将竞争层神经网络的串行迭代模式改为随机优化模式,通过采用退火技术避免网络收敛到能量函数的局部极小点。通过理论分析证明了该算法与竞争层神经网络动力学方程的等价性。通过对比实验验证了算法能够在加快网络收敛速度的同时提高特征绑定结果的合理性。 A competitive layered neural network learning algorithm based on random annealing is proposed and applied in solving image feature binding problem.The proposed algorithm,instead of using serial iteration,uses a random optimization method in learning process;prevents the network from trapping into local optimum through using of the annealing technique.Theoretical analysis proves that the proposed algorithm is equivalent to the dynamics of the competitive layered neural network.Comparative experiments show that the proposed algorithm is capable of speeding up the network convergence as well as improving the rationality of the results of feature binding.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第19期39-42,47,共5页 Computer Engineering and Applications
关键词 竞争层神经网络(CLMNN) 神经网络 图像处理 特征绑定 Competitive Layered Model Neural Networks(CLMNN) neural networks image processing feature binding
  • 相关文献

参考文献10

  • 1Ritter H.A spatial approach to feature linking[C] //Proceedings of International Conference on Neural Networks,Paris,1990. 被引量:1
  • 2Yi Z,Tan K K.Multistability of discrete-time recurrent neural networks with unsaturating piecewise linear activation functions[J].IEEE Transactions on Neural Networks,2004,15(2):329-336. 被引量:1
  • 3Yi Z,Tan K K.Multistability analysis for recurrent neural networks with unsaturating piecewise linear transfer functions[J].Neural Computation,2003,15:639-662. 被引量:1
  • 4Weng S,Wersing H,Steil J J,et al.Learning lateral interactions for feature binding and sensory segmentation from prototypic basis interactions[J].IEEE Transactions on Neural Networks,2006,17(4):843-862. 被引量:1
  • 5Ontrup J,Wersing H,Ritter H.A computational feature binding model of human texture perception[y].Cognitive Processing,2004,5(1):31-44. 被引量:1
  • 6Wersing H,Kirstein S,Schneiders B,et al.Online learning for bootstrapping of object recognition and localization in a biologically motivated architecture[C] //Proceedings of International Conference on Computer Vision Systems,Santorini,Greece,2008. 被引量:1
  • 7Wu F Y.The Potts model[y].Review of Modern Physics,1983,54:235. 被引量:1
  • 8Sirosh J,Miikkulainen R.Topographic receptive fields and patreined lateral interaction in a self-organizing model of the primary visual cortex[J].Neural Computation,1997,9:577-594. 被引量:1
  • 9Hofmann T,Puzicha J,Buhmann J.Unsupervised texture segmentation in a deterministic annealing framework[J].IEEE Transactions on Pattern Analysis end Machine Intelligence,1998,20(8):803-818. 被引量:1
  • 10Koseki O,Matsubara F.Cluster heat bath method on a Quasi-One-Dimensional ising model[J].Journal of the Physical Society of Japan,1997,66(2):322-325. 被引量:1

同被引文献33

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部