期刊文献+

Dirichlet边界条件的声波散射问题的两种数值方法

Two numerical methods for acoustic wave scattering problem with Dirichlet boundary condition
下载PDF
导出
摘要 利用单层位势理论将声波散射的外边值问题转化为第一类边界积分方程,采用迭代的Tikhonov正则化和改进的Tikhonov正则化方法求解,给出了二维空间的数值实例。与Nystrom方法相比,计算简单得到的精度却一样。 A iterated Tikhonov regularization method and a modified Tikhonov regularization method are applied to solve the time-harmonic acoustic wave scattering problem.The single-layer potential theory is used to transfer the exterior boundary value problem into the boundary integral equations of the first kind.Numerical example in two dimensions is given.As compared with ordinary Nystrom method,both methods are accurate and simple to use.
作者 薛晓
出处 《齐齐哈尔大学学报(自然科学版)》 2010年第4期83-87,共5页 Journal of Qiqihar University(Natural Science Edition)
关键词 HELMHOLTZ方程 第一类积分方程 远场模式 Helmholtz equation integral equation of the first kind far field pattern
  • 相关文献

参考文献11

二级参考文献18

  • 1陈宏,侯宗义.The Iterated Regularization With Perturbed Operators and Noisy Data[J].Science China Mathematics,1994,37(12):1409-1417. 被引量:3
  • 2[1]COLTON D, KRESS R. Integrel Equation Methods in Scattering Theory [M]. New York:Wiley-Intescience Publication,1983. 被引量:1
  • 3[2]KRESS R. Linear Integral Equations[M]. New York:Springer-Verlag, 1989. 被引量:1
  • 4[3]KRESS R. Boundary integral equations in time-harmonic acoustic scattering[J]. Meth Comput Modelling, 1991,15:229-243. 被引量:1
  • 5侯宗义,Acta Math Sci,1998年,18卷,2期,177页 被引量:1
  • 6Chen Hong,Sci China A,1994年,37卷,12期,1409页 被引量:1
  • 7Vainikko G, On the Optimality of Methods for Ill-Posed Problems, Z. Anal. Anw., 6:4(1987), 351-362. 被引量:1
  • 8Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems, New York:Springer-Verlag, 1996. 被引量:1
  • 9Engl H,W., Hanke M. and Neubauer A., Regularization of Inverse Problems, Dordrecht:Kluwer Acdemic Publishers, 1996. 被引量:1
  • 10Schroter T. and Tautenhahn U., On the Optimality of Regularization Methods for Solving Linear Ill-Posed Problems, Z. Anal. Anw., 13:4 (1994), 697-710. 被引量:1

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部