期刊文献+

基于RFS和ART的高光谱图像主成分提取方法 被引量:1

Hyperspectral Image Principle Component Extraction Method Based on RFS and ART
下载PDF
导出
摘要 针对传统高光谱图像主成分提取方法受数据分布状态和噪声影响大的缺点,提出基于区域特征光谱的ART(Adaptive Resonance Theory)神经网络主成分提取算法.首先通过多方向阈值空间邻域聚类提取区域特征光谱作为ART的输入模式,利用ART网络的自适应特性获取地物光谱矢量特征,并通过对光谱矢量聚类完成图像的主成分提取.对高光谱图像仿真结果表明:通过提取区域特征光谱,神经网络的数据处理量减少了约97%;算法能够较准确地提取图像主成分且提取效果明显好于K-均值算法. Algorithms used to extract principle components of hyperspectral image are sensitive to noise and data distribution.A principle components extracting algorithm based on the region feature spectrum(RFS) and ART is presented.The algorithm firstly extracts region feature spectrum through spatial neighborhood clustering as input pattern vectors of the network,and then acquires the classificatory character adaptively.Finally,extraction is successfully achieved by using clustering spectral vectors.The experiments on hyperspectral images indicate that the size of data processed by network is reduced about 97%,and the extraction effect is obviously better than that by K-means algorithm.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2010年第3期286-290,共5页 Journal of North University of China(Natural Science Edition)
关键词 高光谱图像 主成分提取 区域特征光谱 ART hyperspectral image principle component extraction region feature spectrum ART
  • 相关文献

参考文献6

  • 1童庆禧,张兵,郑兰芬编著..高光谱遥感 原理、技术与应用[M].北京:高等教育出版社,2006:415.
  • 2耿修瑞,张霞,陈正超,张兵,郑兰芬,童庆禧.一种基于空间连续性的高光谱图像分类方法[J].红外与毫米波学报,2004,23(4):299-302. 被引量:26
  • 3Landgrebe D A. The development of a spectral-spatial classifier for earth observational data[J]. Pattern Recognit, 1980, 12: 165-175. 被引量:1
  • 4万余庆.高光谱遥感图像分类精度对比研究[J].海洋科学进展,2004,22(B10):39-45. 被引量:4
  • 5Carpenter G A, Grossberg S. ART-2: self-organization of stable category recognition code for analog input pattern [J]. App Optics, 1987, 26(23): 4919-4930. 被引量:1
  • 6Maartje E J, Peter R, Molenaar C M. Exact ART: A complete implementation of an ART network[J]. Neural Networks, 1997, 10(4): 649-669. 被引量:1

二级参考文献3

  • 1[2]Carlotto Mark J. Spectral shape classification of landsat thematic mapper imagery[J]. Photogrammetric Engineering & Remote Sensing, 1998, 64(9): 905-913. 被引量:1
  • 2[4]ZHAO Yong-Chao, TONG Qing-Xi, ZHENG Lan-Fen, et al. A Kernel Adaptive Filter(SRSSHF) and Quality; Improvement Method for Hyperspectral Image on the Base of Spectral Dimension Recognition and Spatial Dimension Smoothing According to CSAM[C], SPIE:SPIE 2nd International Symposium on Multispectral Image Processing and Pattern Recognition, 2001, 4552, 230-236 被引量:1
  • 3[5]ZHANG Bing, ZHANG Xia, LIU Liang-Yun, et al. Spectral unmixing and image classification supported by spatial knowledge[C]. Proceedings of SPIE, 2003: 4897: 279-283 被引量:1

共引文献28

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部