摘要
应用动力系统的局部分支理论,研究一个二维离散动力系统当参数变化时产生的复杂动力学性质。我们应用中心流形定理和分岔理论证明了这个二维离散动力系统存在叉型分岔、倍周期分岔和Hopf分岔。
In this thesis,we discuss the complex dynamics of the two-dimensional discrete system as the bifurcation parameters are changed by using bifurcation theories in dynamical systems. We find the two-dimensional discrete system existence for pitchfork bifurcation,flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory.
出处
《嘉应学院学报》
2010年第5期22-26,共5页
Journal of Jiaying University
关键词
二维离散映射系统
HOPF分岔
倍周期分岔
叉型分岔
two-dimensional discrete system
Hopf bifurcation
flip bifurcation
pitchfork bifurcation.