期刊文献+

Preparation of ultrawide ZnSe nanoribbons with the function of lasing cavity

Preparation of ultrawide ZnSe nanoribbons with the function of lasing cavity
原文传递
导出
摘要 Ultrawide ZnSe nanoribbons are synthesized by the simple thermal evaporation.The microstructure of ZnSe nanoribbons is characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-resolution TEM(HRTEM),photoluminescence(PL) and Raman spectrum.It is found that the strong emission near the band gap of ZnSe centered at 460 nm is obtained in these nanoribbons.More importantly,ZnSe nanoribbons can act as lasing emitting optical cavities.Raman studies indicate that the longitudinal optic(LO) and transverse optic(TO) phonon confinements of the ZnSe nanoribbons shift to lower frequency. Ultrawide ZnSe nanoribbons are synthesized by the simple thermal evaporation.The microstructure of ZnSe nanoribbons is characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-resolution TEM(HRTEM),photoluminescence(PL) and Raman spectrum.It is found that the strong emission near the band gap of ZnSe centered at 460 nm is obtained in these nanoribbons.More importantly,ZnSe nanoribbons can act as lasing emitting optical cavities.Raman studies indicate that the longitudinal optic(LO) and transverse optic(TO) phonon confinements of the ZnSe nanoribbons shift to lower frequency.
出处 《Optoelectronics Letters》 EI 2010年第4期241-244,共4页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 10764005) the Natural Science Foundation of Yunnan Province (Nos. 06A0025Q and 2007PY01-41) the Educational Council of Yunnan Province (Nos. 5Z0098A and 06Y091) the Excellent Talent Supporting Project in the New Century of Chinese Education Ministry (No. NCET-08-0926)
  • 相关文献

参考文献19

  • 1T. Yodo, T. Koyama and K. Yamashita, J. Cryst. Growth 86, 273 (1988). 被引量:1
  • 2W. Tian, F. Wu, W. J. Chen and G. L. Zhang, Journal of Optoelectronics ·Laser 20, 342 (2009). 被引量:1
  • 3A. M. Morales and C. M. Lieber, Science 279, 208 (1998). 被引量:1
  • 4W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001). 被引量:1
  • 5X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Nature 409. 66 (2001). 被引量:1
  • 6C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng and Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001). 被引量:1
  • 7Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001). 被引量:1
  • 8J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, E C. K. Au, Y. Lifshitz and S. T. Lee, Appl. Phys. Lett. 84, 1189 (2004). 被引量:1
  • 9X. S. Fang, S. L. Xiong, T. Y. Zhai and Y. Bando, Adv. Mater. 21, 5016 (2009). 被引量:1
  • 10Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang and N. Wang, Appl. Phys. Lett. 83, 2665 (2003). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部